

# Using R for Systems Understanding

A Dynamic Approach

#### Thomas Petzoldt & Karline Soetaert

Technische Universität Dresden Institute of Hydrobiology Dresden, Germany

thomas.petzoldt@tu-dresden.de

Centre for Estuarine and Marine Ecology (CEME) Netherlands Institute of Ecology (NIOO-KNAW) Yerseke, The Netherlands k.soetaert@nioo.knaw.nl

18<sup>th</sup> August 2011

| troduction |  |  |  |
|------------|--|--|--|
|            |  |  |  |

## **Dynamic Systems**



## Evolution of systems in time (or / and space)

- Growth of organisms (and of my children),
- Economy, traffic, financial markets,
- ► Chemical reactions, spread of diseases,
- Movement of planets, stars, the universe.

#### Description

ntroductio

- Empirical with "pure statistics" (input-output, black box),
- Mechanistic (what's going on within the system):
  - Single objects (= agents, automata, individuals),
  - Populations and pools ( $\longrightarrow$  differential equations).

| Introduction | Methods | Lab model | Ecosystem model | Outlook | Summary |
|--------------|---------|-----------|-----------------|---------|---------|
|              |         |           |                 |         |         |

## Dynamic systems

- $\blacktriangleright$  difficult to forecast in brain  $\longrightarrow$  weather, stock market
- non-linearity, indirect effects, feedback loops, oscillations,
- dampening or autocatalytic amplification?
- $\longrightarrow$  stability, chaos, crash?

#### Modelling

- Systems understanding: most important processes,
- Simulate experiments before wasting time and money,
- Design experiments (and management) for best outcome, and improve statistical significance.





# Differential equations in R: why and how

### Why numerical solutions?

- Not all systems have an analytical solution,
- Numerical solutions allow discrete forcings, events, ...
- If standard tool for statistics, why additional software for dynamic simulations?

#### How in R?

- odesolve (Setzer, 2001):
  - $\rightarrow$  two ODE solvers (lsoda, rk4),
- ▶ deSolve (Soetaert, Petzoldt, Setzer, 2009):
   → comprehensive set of solvers (ODE, DAE, PDE, DDE).
- ► Note: odesolve is deprecated, use deSolve!

# Real systems need more than $\mathsf{ODEs} \to \mathsf{additional}$ features

| Example problem                                                | Туре                         | In R?   |
|----------------------------------------------------------------|------------------------------|---------|
| algebraic constraints                                          | DAE<br>(diff. algebraic eq.) | (1)     |
| time and space                                                 | PDE (partial diff. eq.)      | (1,2,3) |
| time delays                                                    | DDE (delay diff. eq)         | (1)     |
| time dependent external control                                | forcing functions            | (1)     |
| abrupt changes of states<br>(externally triggered)             | events                       | (1)     |
| abrupt changes of states<br>(depending on state of the system) | roots + events               | (1)     |
| identify parameters                                            | sensitivity, calibration     | (4)     |

(1) deSolve – (2) rootSolve – (3) ReacTran – (4) FME

# More additional features

Plotting is made easy with high-level plotting functions

- plot-, image- and hist- methods (S3)
- plotting multiple senarios simultaneously
- adding observed data
- "movie-like" output

## Time-consuming models can be part R/part compiled code

- ▶ as fast as entire model in compiled code
- input output handling as flexible as entire model in R

| troduction | Methods | Lab model | Ecosystem model | Outlook | Summary |
|------------|---------|-----------|-----------------|---------|---------|
|            |         |           |                 |         |         |
| _          |         |           |                 |         |         |
| lase sti   | udies   |           |                 |         |         |





|  | Lab model |  |  |
|--|-----------|--|--|
|  |           |  |  |

## Cultures and growth experiments

- physiological properties of organisms (e.g. growth rate),
- test of environmental factors (temperature, pH, salinity, toxicity),
- ▶ production of biomass, pharmaceuticals, beer, wine, whiskey . . .

### Experimentalists' questions to the modeller

- Determine optimal conditions for getting:
  - statistically significant effects in an experiment.
  - maximum yield of a product with minimum costs.
- > Determine physiological parameters after the experiment.

## Batch and chemostat cultures ...

- ▶ are very easy in R,
- but what with other reactors like "semi-batch"?







▶ cells grow until substrate (e.g. phosphorus) is exhausted.





#### Discontinuous operation not trivial for ODE solvers

- Use very small time steps?  $\rightarrow$  *inefficient*
- $\blacktriangleright$  Use loops to glue separate solutions together  $\ref{eq:loops} \rightarrow \textit{programming}$
- Good news: recent deSolve supports events!



# Substrate limited growth model

| Equations                                                                                                            | R Code                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(S) = \frac{r \cdot S}{ks + S}$ $\frac{dS}{dt} = -\frac{1}{Y} \cdot f(S) \cdot N$ $\frac{dN}{dt} = f(S) \cdot N$   | <pre>library(deSolve) batch &lt;- function(time, y, parms){    with(as.list(c(y, parms)), {      f &lt;- r * S / (ks + S)      dS &lt; 1/Y * f * N      dN &lt;- f * N      return(list(c(dS, dN))) })</pre> |
| <ul> <li>initial values, parameters,<br/>time steps,</li> <li>numerical solution,</li> <li>visualization.</li> </ul> | <pre>} y &lt;- c(S = 10, N = 1e4) parms &lt;- c(r=1, ks=5, Y=1e6, S0=10) times &lt;- seq(0, 20, 0.1) out &lt;- ode(y, times, batch, parms) plot(out)</pre>                                                   |

## Semicontinuous culture (Semibatch II)



etime <- seq(5, 20, 5)

#### # time points to triger events

```
events = list(func = eventfun, time = etime))
```

## Semicontinuous culture III: Turbidostat mode



- Dilute culture when cell number N exceeds critical number (Detected with photometric or turbidity measurement).
- ► Use root-finding properties of the deSolve solvers.

crit <- 0.9e7 # critical cell number that triggers dilution event

```
rootfun <- function (t, y, pars) return(crit - y[2])</pre>
```

out <- ode(y, times, batch, parms, events = list(func = eventfun, root = TRUE), rootfun = rootfun)

|  | Ecosystem model |  |
|--|-----------------|--|
|  |                 |  |

## Matter turnover and transport in a polluted river



Ecosystem mode

- What are the main sources and effects of pollution?
- What can be done to improve water quality?

|  | Ecosystem model |  |
|--|-----------------|--|
|  |                 |  |
|  |                 |  |

## Matter turnover and transport in a polluted river



- Many processes in reality ...
- $\blacktriangleright$  ....let's look at two processes for demonstation basic principles:
  - 1. oxygen consumtion by biological ammonia oxidation (nitrification)
  - 2. oxygen exchange between atmosphere and water (re-aeration)

| Transport, Processes, Stoichiometry |
|-------------------------------------|
| Y(x, n): State matrix               |
| T(x, n): Transport matrix           |
| P(x,k) = f(Y,c): Process matrix     |
| V(k, n): Stoichiometry matrix       |
|                                     |

#### with:

- *n*: number of state variables (e.g. chemical species)
- k: number of processes
- *x*: space coordinate (here: river kilometers in 1D)
- c: constants (model parameters in nonlinear functions)



Transport, Processes, Stoichiometry

 $change = transport + processes \cdot stoichiometry$ 

```
Y' = T + P \cdot V
```

| $\begin{pmatrix} y'_{1,1} \\ y'_{2,1} \end{pmatrix}$ | <br>            | $\begin{pmatrix} y'_{1,n} \\ y'_{2,n} \end{pmatrix}$ | = | $\begin{pmatrix} t_{1,1} \\ t_{2,1} \end{pmatrix}$ | <br><br>$t_{1,n}$<br>$t_{2,n}$ | + | $\begin{pmatrix} p_{1,1} \\ p_{2,1} \end{pmatrix}$ | <br> | $\left. \begin{array}{c} p_{1,k} \\ p_{2,k} \end{array} \right)$ | $\begin{pmatrix} v_{1,1} \\ v_{2,1} \end{pmatrix}$ | <br><br>V1,n<br>V2,n   |
|------------------------------------------------------|-----------------|------------------------------------------------------|---|----------------------------------------------------|--------------------------------|---|----------------------------------------------------|------|------------------------------------------------------------------|----------------------------------------------------|------------------------|
| $y'_{x,1}$                                           | · · · · · · · · | y'/                                                  |   | $t_{x,1}$                                          | <br>t <sub>x,n</sub> /         |   | $\left( p_{x,1} \right)$                           | •••• | p <sub>x,k</sub> )                                               | $v_{k,1}$                                          | <br>v <sub>k,n</sub> ) |

## Core elements of the river model

**Transport** (package ReacTran)

```
tran <- cbind(
    tran.1D(C = NH4, D = D, v = v, C.up = NH4up, C.down = NH4dwn, A = A, dx = Grid)$dC,
    tran.1D(C = NO3, D = D, v = v, C.up = NO3up, C.down = NO3dwn, A = A, dx = Grid)$dC,
    tran.1D(C = O2, D = D, v = v, C.up = O2up, C.down = O2dwn, A = A, dx = Grid)$dC
)</pre>
```

#### Stoichiometry matrix

stoich <- matrix(c(
 # NH4 NO3 02
 0, 0, 1, # reaeration
 -1, +1, -4.57 # nitrification
 ), nrow = 2, byrow = TRUE)</pre>

#### Process equations

#### State equation

dY <- tran + proc %\*% stoich



## Outcome of the river model









See also: nitrification1D\_ani.html

# The dynmod ecosystem – Model is solved, analysis begins ...

- ▶ much can be done with R's standard and contributed packages,
- special packages for dynamic model analysis:

deSolve now supports user-friendly plotting of results. simecol object oriented structuring

of models and scenarios together with their data simecolModels a growing collection of models

FME sensitivity analysis, parameter identification, confidence bands (MCMC)

#### "knowledge base" packages:

marelac datasets, constants, utilities for aquatic sciences
 seacarb seawater carbonate chemistry (Lavigne & Gattuso)
 AquaEnv integrated toolbox for aquatic chemical model generation
 stoichcalc handling of stoichiometric matrices

(Reichert & Schuwirth, 2010)

Sweave for report writing (Leisch, 2002).

## Thank you!

#### More: http://desolve.r-forge.r-project.org (examples, PDFs, papers, books ...).

#### Mailing list:

#### mailto:r-sig-dynamic-models@r-project.org

Special interest group for dynamic simulation models in R.

## Summary and Conclusions

# R supplies a comprehensive ecosystem to the dynamic modeller

- powerful tools and many prototypical examples,
- efficient algorithms for more than only most common situations.
- comprehensive documentation: package docs, publications, books.

R's tools are now suited for both beginners and professional work.

|  |  | Summary |
|--|--|---------|
|  |  |         |
|  |  |         |

## Acknowledgments

#### Citation

A lot of effort went in creating this software; please cite it when using it.

- ▶ to cite deSolve: [31], rootSolve [30], ReacTran [24]
- ► Some complex examples can be found in [27],
- > A framework to fit differential equation models to data is FME [26],
- ▶ A framework for ecological modelling is simecol [14],
- ... and don't forget the long history of original work referenced in the papers mentioned above, especially the original algorithms.

### Acknowledgments

- None of this would be possible without the splendid work of the R Core Team [15],
- This presentation was created with Sweave [9],
- Creation of the packages made use of Rforge [32].

## Bibliography I

- K. E. Brenan, S. L. Campbell, and L. R. Petzold. *Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations*. SIAM Classics in Applied Mathematics, 1996.
- [2] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. Vode, a variable-coefficient ode solver. SIAM Journal on Scientific and Statistical Computing, 10:1038–1051, 1989.
- [3] CWI. Test set for initial value problem solvers, release 2.4, 2008. http://pitagora.dm.uniba.it/~testset/.
- [4] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2009.
- [5] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition Springer-Verlag, Heldeberg, 2010.
- [6] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. Stepleman, editor, Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation, pages 55–64. IMACS / North-Holland, Amsterdam, 1983.
- W. Hundsdorfer and J. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2003.
- [8] R. Lefever, G. Nicolis, and I. Prigogine. On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium. *Journal of Chemical Physics*, 47:1045–1047, 1967.
- F. Leisch. Dynamic generation of statistical reports using literate data analysis. In W. Härdle and B. Rönz, editors, COMPSTAT 2002 – Proceedings in Computational Statistics, pages 575–580, Heidelberg, 2002. Physica-Verlag.

Outlook

# Bibliography II

- E. Lorenz. Deterministic non-periodic flows. Journal of atmospheric sciences, 20:130–141, 1963.
   M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. *Science*, 197:287–289, 1977.
   L. R. Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. *SIAM Journal on Scientific and Statistical Computing*, 4:136–148, 1983.
- [13] T. Petzoldt. R as a simulation platform in ecological modelling. *R News*, 3(3):8–16, 2003.
- [14] T. Petzoldt and K. Rinke. simecol: An object-oriented framework for ecological modeling in R. Journal of Statistical Software, 22(9):1–31, 2007.
- [15] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.
- [16] H. H. Robertson. The solution of a set of reaction rate equations. In J. Walsh, editor, Numerical Analysis: An Introduction, pages 178–182. Academic Press, London, 1966.
- O. Rossler.
   An equation for continous chaos.
   Physics Letters A, 57 (5):397–398, 1976.
- [18] L. Shampine and S. Thompson. Solving ddes in matlab. App. Numer. Math., 37:441–458, 2001.

| Introduction | Methods | Lab model | Ecosystem model | Outlook | Summary |
|--------------|---------|-----------|-----------------|---------|---------|
|              |         |           |                 |         |         |
|              |         |           |                 |         |         |

# Bibliography III

- [19] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB.
- Cambridge University Press, Cambridge, 2003.
- [20] K. Soetaert. rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations, 2009. R package version 1.6.
- [21] K. Soetaert, J. R. Cash, and F. Mazzia. bvpSolve: Solvers for Boundary Value Problems of Ordinary Differential Equations, 2010. R package version 1.1.
- [22] K. Soetaert and P. M. J. Herman. A Practical Guide to Ecological Modelling. Using R as a Simulation Platform. Springer-Verlag, New York, 2009.
- [23] K. Soetaert and F. Meysman. ReacTran: Reactive Transport Modelling in 1D, 2D and 3D, 2009. R package version 1.1.
- [24] K. Soetaert and F. Meysman. Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environmental modelling and software, page in press, 2011.
- [25] K. Soetaert and T. Petzoldt. FME: A Flexible Modelling Environment for Inverse Modelling, Sensitivity, Identifiability, Monte Carlo Analysis, 2009. R package version 1.0.
- [26] K. Soetaert and T. Petzoldt. Inverse modelling, sensitivity and monte carlo analysis in R using package FME. *Journal of Statistical Software*, 33(3):1–28, 2010.
- [27] K. Soetaert and T. Petzoldt. Solving ODEs, DAEs, DDEs and PDEs in R. Journal of Numerical Analysis, Industrial and Applied Mathematics, in press, 2011.

| Introduction | Methods | Lab model | Ecosystem model | Outlook | Summary |
|--------------|---------|-----------|-----------------|---------|---------|
|              |         |           |                 |         |         |
|              |         |           |                 |         |         |

## Bibliography IV

- [28] K. Soetaert, T. Petzoldt, and R. Setzer.
- R-package deSolve, Writing Code in Compiled Languages, 2009. package vignette.
- [29] K. Soetaert, T. Petzoldt, and R. W. Setzer. deSolve: General solvers for initial value problems of ordinary differential equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE), and delay differential equations (DDE), 2009. R package version 1.7.
- [30] K. Soetaert, T. Petzoldt, and R. W. Setzer Solving Differential Equations in R. The R Journal, 2(2):5–15, December 2010.
- [31] K. Soetaert, T. Petzoldt, and R. W. Setzer. Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33(9):1–25, 2010.
- [32] S. Theußl and A. Zeileis. Collaborative Software Development Using R-Forge. The R Journal, 1(1):9–14, May 2009.
- [33] B. van der Pol and J. van der Mark. Frequency demultiplication. Nature, 120:363–364, 1927.