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Introduction Methods Lab model Ecosystem model Outlook Summary

Dynamic Systems

Evolution of systems in time (or / and space)

I Growth of organisms (and of my children),

I Economy, traffic, financial markets,

I Chemical reactions, spread of diseases,

I Movement of planets, stars, the universe.

Description

I Empirical with “pure statistics” (input-output, black box),

I Mechanistic (what’s going on within the system):
I Single objects (= agents, automata, individuals),
I Populations and pools (−→ differential equations).
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Dynamic systems

I difficult to forecast in brain −→ weather, stock market

I non-linearity, indirect effects, feedback loops, oscillations,

I dampening or autocatalytic amplification?

−→ stability, chaos, crash?

Modelling

I Systems understanding: most important processes,

I Simulate experiments before wasting time and money,

I Design experiments (and management)
for best outcome, and improve statistical significance.
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Differential equations in R: why and how

Why numerical solutions?

I Not all systems have an analytical solution,

I Numerical solutions allow discrete forcings, events, ...

I If standard tool for statistics, why additional software for dynamic
simulations?

How in R?

I odesolve (Setzer, 2001):
−→ two ODE solvers (lsoda, rk4),

I deSolve (Soetaert, Petzoldt, Setzer, 2009):
−→ comprehensive set of solvers (ODE, DAE, PDE, DDE).

I Note: odesolve is deprecated, use deSolve!
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Real systems need more than ODEs → additional features

Example problem Type In R?

algebraic constraints DAE (1)
(diff. algebraic eq.)

time and space PDE (partial diff. eq.) (1,2,3)

time delays DDE (delay diff. eq) (1)

time dependent external control forcing functions (1)

abrupt changes of states
(externally triggered) events (1)

abrupt changes of states
(depending on state of the system) roots + events (1)

identify parameters sensitivity, calibration (4)

(1) deSolve – (2) rootSolve – (3) ReacTran – (4) FME
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More additional features

Plotting is made easy with high-level plotting functions

I plot-, image- and hist- methods (S3)

I plotting multiple senarios simultaneously

I adding observed data

I “movie-like” output

Time-consuming models can be part R/part compiled code

I as fast as entire model in compiled code

I input - output handling as flexible as entire model in R
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Case studies
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Cultures and growth experiments

I physiological properties of organisms (e.g. growth rate),

I test of environmental factors (temperature, pH, salinity, toxicity),

I production of biomass, pharmaceuticals, beer, wine, whiskey . . .

Experimentalists’ questions to the modeller

I Determine optimal conditions for getting:
I statistically significant effects in an experiment.
I maximum yield of a product with minimum costs.

I Determine physiological parameters after the experiment.

Batch and chemostat cultures ...

I are very easy in R,

I but what with other reactors like “semi-batch”?
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Substrate dependent growth in a batch

I cells grow until substrate (e.g. phosphorus) is exhausted.

Introduction Methods Lab model Ecosystem model Outlook Summary

Substrate limited growth model

Equations

f (S) =
r · S

ks + S
dS

dt
= − 1

Y
· f (S) · N

dN

dt
= f (S) · N

I initial values, parameters,
time steps,

I numerical solution,

I visualization.

R Code

library(deSolve)

batch <- function(time, y, parms){

with(as.list(c(y, parms)), {

f <- r * S / (ks + S)

dS <- - 1/Y * f * N

dN <- f * N

return(list(c(dS, dN)))

})

}

y <- c(S = 10, N = 1e4)

parms <- c(r=1, ks=5, Y=1e6, S0=10)

times <- seq(0, 20, 0.1)

out <- ode(y, times, batch, parms)

plot(out)
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Semicontinuous culture (Semibatch I)

Discontinuous operation not trivial for ODE solvers

I Use very small time steps? → inefficient

I Use loops to glue separate solutions together?? → programming

I Good news: recent deSolve supports events!

Semicontinuous culture (Semibatch II)

etime <- seq(5, 20, 5) # time points to triger events

eventfun <- function(t, y, parms) { # event function

with(as.list(c(y, parms)), {

return(c(D * S0 + (1-D) * S, (1-D) * N)) # D = dilution rate

})

}

out <- ode(y, times, batch, parms,

events = list(func = eventfun, time = etime))
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Semicontinuous culture III: Turbidostat mode

Cell Number: Nce
lls

 L
-¹

*

* **

I Dilute culture when cell number N exceeds critical number
(Detected with photometric or turbidity measurement).

I Use root-finding properties of the deSolve solvers.

crit <- 0.9e7 # critical cell number that triggers dilution event

rootfun <- function (t, y, pars) return(crit - y[2])

out <- ode(y, times, batch, parms,

events = list(func = eventfun, root = TRUE), rootfun = rootfun)
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Matter turnover and transport in a polluted river

I What are the main sources and effects of pollution?

I What can be done to improve water quality?
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Matter turnover and transport in a polluted river

I Many processes in reality . . .

I . . . let’s look at two processes for demonstation basic principles:

1. oxygen consumtion by biological ammonia oxidation (nitrification)
2. oxygen exchange between atmosphere and water (re-aeration)
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Transport, Processes, Stoichiometry
Y (x , n): State matrix

T (x , n): Transport matrix

P(x , k) = f (Y , c): Process matrix

V (k, n): Stoichiometry matrix

with:
n: number of state variables (e.g. chemical species)
k: number of processes
x : space coordinate (here: river kilometers in 1D)
c: constants (model parameters in nonlinear functions)



Introduction Methods Lab model Ecosystem model Outlook Summary

Transport, Processes, Stoichiometry

change = transport + processes · stoichiometry

Y ′ = T + P · V


y ′
1,1 . . . y ′

1,n

y ′
2,1 . . . y ′

2,n

. . . . . . .
y ′

x,1 . . . y ′
x,n

 =

t1,1 . . . t1,n

t2,1 . . . t2,n

. . . . . . .
tx,1 . . . tx,n

 +

p1,1 . . . p1,k

p2,1 . . . p2,k

. . . . . . .
px,1 . . . px,k

 ·

v1,1 . . . v1,n

v2,1 . . . v2,n

. . . . . . .
vk,1 . . . vk,n



Core elements of the river model
Transport (package ReacTran)

tran <- cbind(
tran.1D(C = NH4, D = D, v = v, C.up = NH4up, C.down = NH4dwn, A = A, dx = Grid)$dC,
tran.1D(C = NO3, D = D, v = v, C.up = NO3up, C.down = NO3dwn, A = A, dx = Grid)$dC,
tran.1D(C = O2 , D = D, v = v, C.up = O2up, C.down = O2dwn, A = A, dx = Grid)$dC

)

Stoichiometry matrix

stoich <- matrix(c(
# NH4 NO3 O2

0, 0, 1, # reaeration
-1, +1, -4.57 # nitrification

), nrow = 2, byrow = TRUE)

Process equations

proc <- cbind(
k2 * (O2sat - O2), # re-aeration
rMax * O2/(O2 + kO2) * NH4 # nitrification

)

State equation

dY <- tran + proc %*% stoich
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Outcome of the river model

image(out1D) # + some tuning to produce figure below

See also: nitrification1D_ani.html

Full scale case studies
At TU Dresden (Germany), Anna-Maria Ertel 
and Sabine Hacker use such models
to analyse pollution turnover and bacteria 
transport in the Western Bug River (Ukraine)

At CEME (The Netherlands) , Roger Nzigou
is using such a model to establish nutrient
budgets for the Girone Estuary

Poland

Ukraine

Belarus

River modellers in Europe

Full scale case studies

Photo removed

More about the Western Bug project, see:
Ertel et al. (2011) Env Earth Sci
DOI 10.1007/s12665-011-1289-0

Photo removed

nitrification1D_ani.html


Introduction Methods Lab model Ecosystem model Outlook Summary

The dynmod ecosystem – Model is solved, analysis begins . . .
I much can be done with R’s standard and contributed packages,

I special packages for dynamic model analysis:

deSolve now supports user-friendly plotting of results.
simecol object oriented structuring

of models and scenarios together with their data
simecolModels a growing collection of models

FME sensitivity analysis, parameter identification,
confidence bands (MCMC)

I “knowledge base” packages:

marelac datasets, constants, utilities for aquatic sciences
seacarb seawater carbonate chemistry (Lavigne & Gattuso)

AquaEnv integrated toolbox for aquatic chemical model
generation

stoichcalc handling of stoichiometric matrices
(Reichert & Schuwirth, 2010)

I Sweave for report writing (Leisch, 2002).
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Summary and Conclusions

R supplies a comprehensive ecosystem
to the dynamic modeller

I powerful tools and many prototypical examples,

I efficient algorithms for more than only most common situations.

I comprehensive documentation: package docs, publications, books.

R’s tools are now suited for both beginners and professional work.
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Thank you!

More:
http://desolve.r-forge.r-project.org

(examples, PDFs, papers, books . . . ).

Mailing list:
mailto:r-sig-dynamic-models@r-project.org

Special interest group for dynamic simulation models in R.
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