

イロト イヨト イヨト イヨト

- 2

Differential Equations in R

Tutorial useR conference 2011

Karline Soetaert, & Thomas Petzoldt

Centre for Estuarine and Marine Ecology (CEME) Netherlands Institute of Ecology (NIOO-KNAW) P.O.Box 140 4400 AC Yerseke The Netherlands

k.soetaert@nioo.knaw.nl

Technische Universität Dresden Faculty of Forest- Geo- and Hydrosciences Institute of Hydrobiology 01062 Dresden Germany

thomas.petzoldt@tu-dresden.de

September 15, 2011

Introduction						
000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000 00000000000000000	000000 000000	000 00 0 0

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,

000 000000 00000 00000 000000 00000000	Introduction						
	000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000 000000000000000	000000 000000	000 00 0 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,
- Forcing functions and events
- Partial differential equations with ReacTran
- Speeding up

Introduction			Plotting	Forcings + Events		Speeding up
●00 ○	0000000 0000 00	00000 000000 00	0 0000000 00000	00000	000000 000000	000 00 0 0

Installing the R Software and packages Downloading R from the R-project website: http://www.r-project.org

Packages can be installed from within the R-software:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

or via commandline

install.packages("deSolve", dependencies = TRUE)

Introduction			Plotting	Forcings + Events		Speeding up
0 00 0	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 0 0
Installing						

Installing a suitable editor

Tinn-R is suitable (if you are a Windows adept)

Rstudio is very promising

Introduction			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000	000 00 0 0
Installing						

Necessary packages

Several packages deal with differential equations

- deSolve: main integration package
- rootSolve: steady-state solver
- bvpSolve: boundary value problem solvers
- ReacTran: partial differential equations
- simecol: interactive environment for implementing models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

All packages have at least one author in common

 \rightarrow **Consistency** in interface

Introduction			Plotting	Forcings + Events		Speeding up
000 •	0000000 0000 00	00000 000000 00	0 0000000 00000	00000	000000 000000	000 00 0 0
Cetting help						

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Getting help

- ?deSolve opens the main help file
 - Index at bottom of this page opens an index page
- One main manual (or "vignette"):
 - vignette("deSolve")
 - vignette("rootSolve")
 - vignette("bvpSolve")
 - vignette("ReacTran")
 - vignette("simecol-introduction")
- Several dedicated vignettes:
 - vignette("compiledCode")
 - vignette("bvpTests")
 - vignette("PDE")
 - vignette("simecol-Howto")

	Model Specification		Plotting	Forcings + Events		Speeding up
000	•000000 0000 00	00000 000000 00	0 0000000 0000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0
One equation						

Model specification

Let's begin ...

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	000000 0000 00	00000 000000 00	0 @000000 0000	00000	000000 000000	000 00 0 0
One equation						

Logistic growth

Differential equation

$$\frac{dN}{dt} = r \cdot N \cdot \left(1 - \frac{N}{K}\right)$$

Analytical solution

$$N_t = \frac{KN_0e^{rt}}{K + N_0\left(e^{rt} - 1\right)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

R implementation

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000 000000	000 00 0 0
0						

Numerical simulation in R

Why numerical solutions?

- Not all systems have an analytical solution,
- Numerical solutions allow discrete forcings, events, ...

Why R?

▶ If standard tool for statistics, why x\$\$\$ for dynamic simulations?

• Other reasons will show up at this conference (useR!2011).

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	000000 0000 00	00000	0000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0
<u> </u>						

Numerical solution of the logistic equation

	Model Specification		Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000 000000	000 00 0 0
One equation						

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Inspecting output

Print to screen

> head(out, n = 4)

	time	N
[1,]	0	0.1000000
[2,]	1	0.1104022
[3,]	2	0.1218708
[4,]	3	0.1345160

Summary

> summary(out)

	N
Min.	0.100000
1st Qu.	1.096000
Median	5.999000
Mean	5.396000
3rd Qu.	9.481000
Max.	9.955000
N	101.000000
sd	3.902511

	Model Specification		Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000 000000	000 00 0 0
One equation						

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Inspecting output -ctd

```
> Plotting
> plot(out, main = "logistic growth", lwd = 2)
```


	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	000000 0000 00	00000 000000 00	0 00000000 00000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0
One equation						

Inspecting output -ctd

Diagnostic features of simulation

> diagnostics(out)

.

lsoda return code

return code (idid) = 2 Integration was successful.

INTEGER values

	Model Specification		Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Coupled ODEs: the rigidODE problem

Problem [3]

- Euler equations of a rigid body without external forces.
- Three dependent variables (y₁, y₂, y₃), the coordinates of the rotation vector,

> I_1 , I_2 , I_3 are the principal moments of inertia.

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 00000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Coupled ODEs: the rigidODE equations

Differential equation

$$\begin{array}{rcl} y_1' &=& (l_2 - l_3)/l_1 \cdot y_2 y_3 \\ y_2' &=& (l_3 - l_1)/l_2 \cdot y_1 y_3 \\ y_3' &=& (l_1 - l_2)/l_3 \cdot y_1 y_2 \end{array}$$

Parameters

$$l_1 = 0.5, l_2 = 2, l_3 = 3$$

Initial conditions

$$y_1(0) = 1, y_2(0) = 0, y_3(0) = 0.9$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

	Model Specification		Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000 000000	000 00 0 0
Coupled equation	ons					

Coupled ODEs: the rigidODE problem

R implementation

```
> library(deSolve)
> rigidode <- function(t, v, parms) {</pre>
+ dy1 <- -2 * y[2] * y[3]
+ dy2 <- 1.25* y[1] * y[3]
+ dv3 < -0.5 * v[1] * v[2]
+ list(c(dy1, dy2, dy3))
+ }
> yini <- c(y1 = 1, y2 = 0, y3 = 0.9)
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode (times = times, y = yini, func = rigidode, parms = NULL)
> head (out, n = 3)
    time
                v1
                     v2
                                     v3
[1,] 0.00 1.0000000 0.0000000 0.9000000
[2,] 0.01 0.9998988 0.01124925 0.8999719
[3,] 0.02 0.9995951 0.02249553 0.8998875
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	000000 000	000000	000000	00000	000000 000000	000
	00	00 (0000			00

Coupled equations

Coupled ODEs: plotting the rigidODE problem

- > plot(out)
- > library(scatterplot3d)
- > par(mar = c(0, 0, 0, 0))

> scatterplot3d(out[,-1], xlab = "", ylab = "", zlab = "", label.tick.marks = FALSE)

у3

time

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 • 0	00000 000000 00	000000	00000	000000 000000	000 00 0 0
Exercise						

Exercise: the Rossler equations

Differential equation [12]

$$\begin{array}{rcl} y_1' &=& -y_2 - y_3 \\ y_2' &=& y_1 + a \cdot y_2 \\ y_3' &=& b + y_3 \cdot (y_1 - c) \end{array}$$

Parameters

$$a = 0.2, b = 0.2, c = 5$$

Initial Conditions

$$y_1 = 1, y_2 = 1, y_3 = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

	Model Specification		Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000 000000	000 00 0 0
Econolise						

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exercise: the Rossler equations - ctd

Tasks:

- ▶ Solve the ODEs on the interval [0, 100]
- Produce a 3-D phase-plane plot
- Use file examples/rigidODE.R.txt as a template

		Solvers				
000 0	0000000 0000 00	00000 000000 00	0000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Solvers ...

Solver overview, stiffness, accuracy

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	•00000 000000 00	0000000	00000	000000 000000	000 00 0 0
Solvers						

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Integration methods: package deSolve [20]

		Solvers	Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0
e .						

Solver overview: package deSolve

Function	Description
lsoda [9]	IVP ODEs, full or banded Jacobian, automatic choice for
	stiff or non-stiff method
lsodar [9]	same as lsoda; includes a root-solving procedure.
lsode [5],	IVP ODEs, full or banded Jacobian, user specifies if stiff
vode [2]	(bdf) or non-stiff (adams)
lsodes [5]	IVP ODEs; arbitrary sparse Jacobian, stiff
rk4, rk,	IVP ODEs; Runge-Kutta and Euler methods
euler	
radau [4]	IVP ODEs+DAEs; implicit Runge-Kutta method
daspk [1]	IVP ODEs+DAEs; bdf and adams method
zvode	IVP ODEs, like vode but for complex variables
adapted from [1	9].

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Solver overview: package deSolve

Solver	Notes	stiff	y'=f(t,y)	My'=f(t,y)	F(y',t,y)=0	Roots	Events	Lags (DDE)	Nesting
Isoda/Isodar	automatic method selection	auto	x			X	X	X	
Isode	bdf, adams,	user defined	X			X	X	X	
Isodes	sparse Jacobian	yes	X			X	X	X	
vode	bdf, adams,	user defined	X				X	X	
zvode	complex numbers	user defined	X				X	X	
daspk	DAE solver	yes	X	X	X		X	X	
radau	DAE; implicit RK	yes	X	X		X	X	X	
rk, rk4, euler	euler, ode23, ode45, rkMethod	no	x				X		X
iteration	returns state at t+dt	no	х				X		X

- ode, ode.band, ode.1D, ode.2D, ode.3D: top level functions (wrappers)

- red: functionality added by us

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 00000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Options of solver functions

Top level function

```
> ode(y, times, func, parms,
+ method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
+ "euler", "rk4", "ode23", "ode45", "radau",
+ "bdf", "bdf_d", "adams", "impAdams_d",
+ "iteration"), ...)
```

Workhorse function: the individual solver

```
> lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
   iacfunc = NULL, iactvpe = "fullint", rootfunc = NULL,
+
   verbose = FALSE, nroot = 0, tcrit = NULL,
+
   hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
+
   maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
+
+
   maxsteps = 5000, dllname = NULL, initfunc = dllname,
+
   initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
   outnames = NULL, forcings = NULL, initforc = NULL,
+
   fcontrol = NULL, events = NULL, lags = NULL,...)
+
```

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0000000	00000	000000 000000	000 00 0 0
Solvers						

Arghhh, which solver and which options???

Problem type?

- ODE: use ode,
- DDE: use dede,
- DAE: daspk or radau,
- PDE: ode.1D, ode.2D, ode.3D,

... others for specific purposes, e.g. root finding, difference equations (euler, iteration) or just to have a comprehensive solver suite (rk4, ode45).

Stiffness

- default solver lsoda selects method automatically,
- adams or bdf may speed up a little bit if degree of stiffness is known,
- vode or radau may help in difficult situations.

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000 000000	000 00 0 0
Stiffnere						

Solvers for stiff systems

Stiffness

- Difficult to give a precise definition.
- pprox system where some components change more rapidly than others.

Sometimes difficult to solve:

- solution can be numerically unstable,
- may require very small time steps (slow!),
- deSolve contains solvers that are suitable for stiff systems,
- But: "stiff solvers" slightly less efficient for "well behaving" systems.
 - ► Good news: lsoda selects automatically between stiff solver (bdf) and nonstiff method (adams).

Introduction 000 0	Model Specification 0000000 0000 00	Solvers 00000 000000	Plotting 0 0000000	Forcings + Events 00000 000000000000000000000000000000	ns Partial Diff. Equations 000000 000000	Speeding up 000 00
Stiffness	00	00	0000			00

Van der Pol equation

Oscillating behavior of electrical circuits containing tubes [22]. 2^{nd} order ODE

$$y'' - \mu(1 - y^2)y' + y = 0$$

 \ldots must be transformed into two 1^{st} order equations

$$y'_1 = y_2$$

 $y'_2 = \mu \cdot (1 - y_1^2) \cdot y_2 - y_1$

- ▶ Initial values for state variables at t = 0: $y_{1_{(t=0)}} = 2, y_{2_{(t=0)}} = 0$
- ▶ One parameter: $\mu = \text{large} \rightarrow \text{stiff system}$; $\mu = \text{small} \rightarrow \text{non-stiff}$.

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000 000000	000 00 0 0
C+:65						

Model implementation

```
> library(deSolve)
> vdpol <- function (t, y, mu) {</pre>
  list(c(
+
          v[2].
+
          mu * (1 - y[1]^2) * y[2] - y[1]
+
+
   ))
+ }
> yini <- c(y1 = 2, y2 = 0)
> stiff <- ode(y = yini, func = vdpol, times = 0:3000, parms = 1000)
> nonstiff <- ode(y = yini, func = vdpol, times = seq(0, 30, 0.01), parms = 1)
> head(stiff, n = 5)
    time
                y1
                              v2
[1,]
     0 2.000000 0.000000000
[2.]
     1 1.999333 -0.0006670373
[3,] 2 1.998666 -0.0006674088
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
[4,] 3 1.997998 -0.0006677807
[5,] 4 1.997330 -0.0006681535
```

		Solvers	Plotting	Forcings + Events			Speeding up
000	0000000	00000	0	00000		000000	000
	0000	0000000	0000000	000000000000000000000000000000000000000	00	000000	00
Stiffness							

Interactive exercise

- The following link opens in a web browser. It requires a recent version of Firefox, Internet Explorer or Chrome, ideal is Firefox 5.0 in full-screen mode. Use Cursor keys for slide transition:
- Left cursor guides you through the full presentation.
- Mouse and mouse wheel for full-screen panning and zoom.
- Pos1 brings you back to the first slide.
 - examples/vanderpol.svg
- The following opens the code as text file for life demonstrations in R

examples/vanderpol.R.txt

		Solvers	Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0000000	00000	000000 000000	000 00 0 0
Stiffness						

Plotting

Stiff solution

IVP ODE, stiff

time

Nonstiff solution

> plot(nonstiff, type = "l", which = "y1", + lwd = 2, ylab = "y", + main = "IVP ODE, nonstiff")

IVP ODE, nonstiff

Default solver, 1soda:

```
> system.time(
   stiff <- ode(yini, 0:3000, vdpol, parms = 1000)</pre>
+
+ )
  user system elapsed
  0.59 0.00 0.61
> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1)
+ )
  user system elapsed
  0.67 0.00 0.69
Implicit solver, bdf:
> system.time(
   stiff <- ode(vini, 0:3000, vdpol, parms = 1000, method = "bdf")
+
+ )
  user system elapsed
  0.55 0.00 0.60
> system.time(
+ nonstiff <- ode(vini, seq(0, 30, by = 0.01), vdpol, parms = 1, method = "bdf")
+ )
  user system elapsed
  0.36 0.00 0.36
\Rightarrow Now use other solvers, e.g. adams, ode45, radau.
```

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000 000000	000 00 0 0
Stiffness						

Results

Timing results; your computer may be faster:

solver	non-stiff	stiff
ode23	0.37	271.19
lsoda	0.26	0.23
adams	0.13	616.13
bdf	0.15	0.22
radau	0.53	0.72

Comparison of solvers for a stiff and a non-stiff parametrisation of the van der Pol equation (time in seconds, mean values of ten simulations on an AMD AM2 X2 3000 CPU).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

		Solvers	Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 0 0
Accuracy						

Accuracy and stability

- Options atol and rtol specify accuracy,
- Stability can be influenced by specifying hmax and maxsteps.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

		Solvers	Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0
Accuracy						

Accuracy and stability - ctd

atol (default 10^{-6}) defines absolute threshold,

- select appropriate value, depending of the size of your state variables,
- may be between $\approx 10^{-300}$ (or even zero) and $\approx 10^{300}$.

rtol (default 10^{-6}) defines relative threshold,

► It makes no sense to specify values < 10⁻¹⁵ because of the limited numerical resolution of double precision arithmetics (≈ 16 digits).

- ロ ト - 4 回 ト - 4 □ - 4

hmax is automatically set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. Sometimes, it may be set to a smaller value to improve robustness of a simulation.

hmin should normally not be changed.

Example: Setting rtol and atol: examples/PCmod_atol_0.R.txt

		Solvers Plotting			
000 0	0000000 0000 00	00000 0 000000000000 00 0000	00000 0 000000000000	000000 000000	000 00 0 0

Plotting, scenario comparison, observations

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● 9 Q @
			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00		00000	000000 000000	000 00 0 0
Overview						

Plotting and printing

Methods for plotting and extracting data in deSolve

- subset extracts specific variables that meet certain constraints.
- plot, hist create one plot per variable, in a number of panels
- image for plotting 1-D, 2-D models
- plot.1D and matplot.1D for plotting 1-D outputs
- ?plot.deSolve opens the main help file

rootSolve has similar functions

- subset extracts specific variables that meet certain constraints.
- plot for 1-D model outputs, image for plotting 2-D, 3-D model outputs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

?plot.steady1D opens the main help file

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 00000	00000	000000 000000	000 00 0 0
Example: Chaos	5					

Chaos

The Lorenz equations

- chaotic dynamic system of ordinary differential equations
- three variables, X, Y and Z represent idealized behavior of the earth's atmosphere.

```
> chaos <- function(t, state, parameters) {</pre>
    with(as.list(c(state)), {
+
+
     dx <- -8/3 * x + y * z
+
     dy < --10 * (y - z)
+
     dz < -x * y + 28 * y - z
+
+
+
     list(c(dx, dy, dz))
+
   })
+ }
> yini <- c(x = 1, y = 1, z = 1)
> yini2 <- yini + c(1e-6, 0, 0)
> times <- seq(0, 100, 0.01)
> out <- ode(y = yini, times = times, func = chaos, parms = 0)
> out2 <- ode(y = yini2, times = times, func = chaos, parms = 0)
```

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ④

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 0 0
Example: Chaos						

Plotting multiple scenarios

- > The default for plotting one or more objects is to draw a line plot
- We can plot as many objects of class deSolve as we want.

25 30

イロト 不得 トイヨト イヨト

э

By default different outputs get different colors and line types

> plot(out, out2, xlim = c(0, 30), lwd = 2, lty = 1)

time

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00		00000	000000 000000	000 00 0 0
Example: Chaos						

Changing the panel arrangement

Default

The number of panels per page is automatically determined up to 3×3 (par(mfrow = c(3, 3))).

Use mfrow() or mfcol() to overrule

> plot(out, out2, xlim = c(0, 30), lwd = 2, lty = 1, mfrow = c(1, 3))

Important:

upon returning the default mfrow is **NOT** restored

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0000000	00000	000000 000000	000 00 0 0
Example: Chao	5					

Changing the defaults

- ▶ We can change the defaults of the *dataseries*, (col, lty, etc.)
 - will be effective for all figures
- ▶ We can change the default of each *figure*, (title, labels, etc.)
 - vector input can be specified by a list; NULL will select the default

-

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000 000000	000 00 0 0
Example: Chao	s					

R's default plot

▶ If we select x and y-values, R's default plot will be used > plot(out[,"x"], out[,"y"], pch = ".", main = "Lorenz butterfly",

xlab = "x", ylab = "y")

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 0000000 0000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0
Example: Chao	s					

R's default plot

Use subset to select values that meet certain conditions:

```
> XY <- subset(out, select = c("x", "y"), subset = y < 10 & x < 40)
> plot(XY, main = "Lorenz butterfly", xlab = "x", ylab = "y", pch = ".")
```

Lorenz butterfly

		Solvers Plot	otting	Forcings + Events		Speeding up
000	0000000 0000 00		00000 000	00000	000000 000000	000 00 0 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Plotting multiple scenarios

Simple if number of outputs is known

```
> derivs <- function(t, y, parms)
+ with (as.list(parms), list(r * y * (1-y/K)))
> parms <- c(r = 1, K = 10)
> yini <- c(y = 2)
> yini2 <- c(y = 12)
> times <- seq(from = 0, to = 30, by = 0.1)
> out <- ode(y = yini, parms = parms, func = derivs, times = times)
> out2 <- ode(y = yini2, parms = parms, func = derivs, times = times)
> plot(out, out2, lwd = 2)
```


			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000 0000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Plotting multiple scenarios

Use a list if many or unknown number of outputs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000 0000	00000	000000 000000	000 00 0 0
Multiple scenari	os					

Observed data

Arguments obs and obspar are used to add observed data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

> obs2 <- data.frame(time = c(1, 5, 10, 20, 25), y = c(12, 10, 8, 9, 10))
> plot(out, out2, obs = obs2, obspar = list(col = "red", pch = 18, cex = 2))

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	00000000000000000000000000000000000000	00000	000000 000000	000 00 0 0
Multiple scenari	05					

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Observed data

A list of observed data is allowed

			Forcings + Events		
000 0	0000000 0000 00		00000 000000000000000000000000000000000	000000 000000	000 00 0 0

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○

Under control: Forcing functions and events

				Forcings + Events		
000 0	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Discontinuities in dynamic models

Most solvers assume that dynamics is *smooth* However, there can be several types of discontinuities:

- Non-smooth external variables
- Discontinuities in the *derivatives*
- Discontinuites in the values of the state variables

A solver does not have large problems with first two types of discontinuities, but changing the values of state variables is much more difficult.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	• 00000 0000000000000000000000000000000	000000 000000	000 00 0 0
Extornal Variabl	oc.					

External variables in dynamic models

... also called forcing functions

Why external variables?

- Some important phenomena are not explicitly included in a differential equation model, but imposed as a *time series*. (e.g. sunlight, important for plant growth is never "modeled").
- Somehow, during the integration, the model needs to know the value of the external variable at each time step!

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0000000	00000000000000000000000000000000000000	000000 000000	000 00 0 0
- · · · · · · ·						

External variables in dynamic models

Implementation in R

- R has an ingenious function that is especially suited for this task: function approxfun
- It is used in two steps:
 - First an interpolating function is constructed, that contains the data. This is done before solving the differential equation.

```
afun <- approxfun(data)
```

Within the derivative function, this interpolating function is called to provide the interpolated value at the requested time point (t):

tvalue <- afun(t)</pre>

?forcings will open a help file

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000	000000 000000	000 00 0 0

External Variables

Example: Predator-Prey model with time-varying input

This example is from [15]

Create an artificial time-series

```
> times <- seq(0, 100, by = 0.1)
> signal <- as.data.frame(list(times = times, import = rep(0, length(times))))
> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)
> signal[8:12,]
times import
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Create the interpolating function, using approxfun

```
> input <- approxfun(signal, rule = 2)
> input(seq(from = 0.98, to = 1.01, by = 0.005))
[1] 0.80 0.85 0.90 0.95 1.00 1.00 1.00
```

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 0000000 00000	000000000000000000000000000000000000000	000000 000000	000 00 0 0
E						

A Predator-Prey model with time-varying input

Use interpolation function in ODE function

```
> SPCmod <- function(t, x, parms) {
     with(as.list(c(parms, x)), {
+
+
    import <- input(t)</pre>
+
+
  dS <- import - b * S * P + g * C
+
  dP < -c * S * P - d * C * P
+
+
  dC <- e * P * C - f * C
+ res <- c(dS, dP, dC)
+ list(res, signal = import)
+ })
+ }
> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0)
> xstart <- c(S = 1, P = 1, C = 1)
> out <- ode(y = xstart, times = times, func = SPCmod, parms)
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 @000000 0000	000000000000000000000000000000000000000	000000 000000	000 00 0 0
External Variabl	ec.					

Plotting model output

> plot(out)

С

signal

80 100

<ロト <回ト < 注ト < 注ト æ

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	0000000	00000	00	000000 000000	000 00 0 0
Evente							

Discontinuities in dynamic models: Events

What?

> An event is when the values of state variables change abruptly.

Events in Most Programming Environments

- ▶ When an event occurs, the simulation needs to be restarted.
- Use of loops etc. . . .
- Cumbersome, messy code

Events in R

- Events are part of a model; no restart necessary
- Separate dynamics inbetween events from events themselves

Very neat and efficient!

			Plotting	Forcings + Events			Speeding up
000	0000000 0000 00	00000 000000 00	000000	00000	000	000000 000000	000 00 0 0

Discontinuities in dynamic models, Events

Two different types of events in R

- Events occur at known times
 - Simple changes can be specified in a data.frame with:
 - name of state variable that is affected
 - the time of the event
 - the magnitude of the event
 - event method ("replace", "add", "multiply")
 - More complex events can be specified in an event function that returns the changed values of the state variables function(t, y, parms, ...).

- Events occur when certain conditions are met
 - Event is triggered by a root function
 - Event is specified in an event function

?events will open a help file

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000	00	000000 000000	000 00 0 0
-							

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A patient injects drugs in the blood

Problem Formulation

- Describe the concentration of the drug in the blood
- Drug injection occurs at known times $\rightarrow \texttt{data.frame}$

Dynamics inbetween events

- The drug decays with rate b
- Initially the drug concentration = 0:

```
> pharmaco <- function(t, blood, p) {
+ dblood <- - b * blood
+ list(dblood)
+ }
> b <- 0.6
> yini <- c(blood = 0)</pre>
```

			Plotting	Forcings + Events			Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
-							

A patient injects drugs in the blood

Specifying the event

- Daily doses, at same time of day
- Injection makes the concentration in the blood increase by 40 units.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The drug injections are specified in a special event data.frame

```
> head(injectevents)
```

	var	time	value	${\tt method}$
1	blood	0	40	add
2	blood	1	40	add
3	blood	2	40	add
4	blood	3	40	add
5	blood	4	40	add
6	blood	5	40	add

			Plotting	Forcings + Events			Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
Econtra							

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A patient injects drugs in the blood

Solve model

- Pass events to the solver in a list
- All solvers in deSolve can handle events
- Here we use the "implicit Adams" method

```
> times <- seq(from = 0, to = 10, by = 1/24)
> outDrug <- ode(func = pharmaco, times = times, y = yini,
+ parms = NULL, method = "impAdams",
+ events = list(data = injectevents))</pre>
```

			Plotting	Forcings + Events			Speeding up
000	0000000 0000 00	00000 000000 00	000000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
Events							

plotting model output

> plot(outDrug)

ヘロト 人間ト 人間ト 人間ト

æ

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
E							

An event triggered by a root: A Bouncing Ball

Problem formulation [13]

- A ball is thrown vertically from the ground (y(0) = 0)
- ▶ Initial velocity (y') = 10 $m s^{-1}$; acceleration $g = 9.8 m s^{-2}$
- When ball hits the ground, it bounces.

ODEs describe height of the ball above the ground (y)

Specified as 2nd order ODE

y'' = -gy(0) = 0y'(0) = 10 Specified as 1st order ODE

$$\begin{array}{rcrcrc} y_1' & = & y_2 \\ y_2' & = & -g \\ y_1(0) & = & 0 \\ y_2(0) & = & 10 \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
Economic							

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A Bouncing Ball

Dynamics inbetween events

			Plotting	Forcings + Events			Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
-							

The Ball Hits the Ground and Bounces

Root: the Ball hits the ground

- The ground is where height = 0
- Root function is 0 when $y_1 = 0$

> rootfunc <- function(t, y, parms) return (y[1])</pre>

Event: the Ball bounces

- ▶ The velocity changes sign (-) and is reduced by 10%
- Event function returns changed values of both state variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

```
> eventfunc <- function(t, y, parms) {
+ y[1] <- 0
+ y[2] <- -0.9*y[2]
+ return(y)
+ }</pre>
```

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
-							

An event triggered by a root: the bouncing ball

Solve model

- Inform solver that event is triggered by root (root = TRUE)
- Pass event function to solver
- Pass root function to solver

Get information about the root

```
> attributes(out)$troot
```

[1] 2.040816 3.877551 5.530612 7.018367 8.357347 9.562428 10.647001 11.623117
[9] 12.501621 13.292274 14.003862 14.644290 15.220675 15.739420 16.206290 16.626472
[17] 17.004635 17.344981 17.651291 17.926970 18.175080 18.398378 18.599345 18.780215
[25] 18.942998 19.089501 19.221353 19.340019 19.446817 19.542935 19.629441 19.707294
[33] 19.777362 19.840421 19.897174 19.948250 19.994217

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	000000000000000000000000000000000000000	00	000000 000000	000 00 0 0
-							

æ

イロト イヨト イヨト

An event triggered by a root: the bouncing ball

> plot(out, select = "height")

height

time

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	0000000000000000	00	000000 000000	000 00 0 0
Events							

An event triggered by a root: the bouncing ball Create Movie-like output

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	000000000000000000000000000000000000000	0	000000 000000	000 00 0 0
Events							

Exercise: Add events to a logistic equation

Problem formulation, ODE

The logistic equation describes the growth of a population:

$$y'=r\cdot y\cdot (1-\frac{y}{K})$$

$$r = 1, K = 10, y_0 = 2$$

Events

This population is being harvested according to several strategies:

- There is no harvesting
- Every 2 days the population's density is reduced to 50%
- When the species has reached 80% of its carrying capacity, its density is halved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

			Plotting	Forcings + Events			Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	000000000000000000000000000000000000000	0•	000000 000000	000 00 0 0
Events							

Exercise: Add events to a logistic equation - ctd

Tasks:

- Run the model for 20 days
- Implement first strategy in a data.frame
- Second strategy requires root and event function
- Use file examples/logisticEvent.R.txt as a template

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

					Delay Diff. Equations		
000 0	0000000 0000 00	00000	0000000	00000 000000000000000000000000000000000		000000 000000	000 00 0 0

Delay Differential Equations

What?

Delay Differential Equations are similar to ODEs except that they involve *past* values of variables and/or derivatives.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DDEs in R: R-package deSolve

- dede solves DDEs
- lagvalue provides lagged values of the state variables
- lagderiv provides lagged values of the derivatives

					Delay Diff. Equations		
000 0	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000		000000 000000	000 00 0 0

Example: Chaotic Production of White Blood Cells

Mackey-Glass Equation [8]:

- y: current density of white blood cells,
- y_{τ} is the density τ time-units in the past,
- first term equation is production rate
- b is destruction rate

$$\begin{array}{rcl} y' & = & a y_{\tau} \frac{1}{1+y_{\tau}^c} - b y \\ y_{\tau} & = & y(t-\tau) \\ y_t & = & 0.5 & \text{for } t \leq 0 \end{array} \tag{1}$$

- For $\tau = 10$ the output is periodic,
- For $\tau = 20$ cell densities display a chaotic pattern

			Plotting		Delay Diff. Equations		
000 0	0000000 0000 00	00000 0000000 00	0 2000000 0000	00000 000000000000000000000000000000000		000000 000000	000 00 0 0

Solution in R

```
> library(deSolve)
> retarded <- function(t, y, parms, tau) {</pre>
  tlag <- t - tau
+
  if (tlag <= 0)
+
+
  vlag <- 0.5
+ else
   ylag <- lagvalue(tlag)
+
+
  dy <- 0.2 * ylag * 1/(1+ylag^10) - 0.1 * y
+
   list(dy = dy, ylag = ylag)
+
+ }
> vinit <- 0.5
> times <- seq(from = 0, to = 300, by = 0.1)
> yout1 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 10)
> yout2 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 20)
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

			Plotting	Forcings + Events	Delay Diff. Equations		Speeding up
000	0000000 0000 00	00000 000000 00	000000	00000 00000000000000000		000000 000000	000 00 0 0

Solution in R

> plot(yout1, lwd = 2, main = "tau=10", ylab = "y", mfrow = c(2, 2), which = 1)
> plot(yout1[,-1], type = "1", lwd = 2, xlab = "y")
> plot(yout2, lwd = 2, main = "tau=20", ylab = "y", mfrow = NULL, which = 1)
> plot(yout2[,-1], type = "1", lwd = 2, xlab = "y")

			Plotting	Forcings + Events	Delay Diff. Equations		Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000		000000 000000	000 00 0 0

Exercise: the Lemming model

A nice variant of the logistic model is the DDE lemming model [14]:

$$y' = r \cdot y(1 - \frac{y(t - \tau)}{\kappa})$$
⁽²⁾

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Use file examples/ddelemming.R.txt as a template to implement this model

- initial condition y(t = 0) = 19.001
- parameter values r = 3.5, $\tau = 0.74$, K = 19
- history y(t) = 19 for t < 0
- ▶ Generate output for t in [0, 40].

000 000000 00000 00000 000000 <					ions Partial Diff. Equations	
	000 0	0000000 0000 00	00000 0 000000000000 00 0000	00000 0 000000000000000	000000 000000	000 00 0 0

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Diffusion, advection and reaction: Partial differential equations (PDE) with ReacTran

					Partial Diff. Equations	
000 0	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Partial Differential Equations

PDEs as advection-diffusion problems

Many second-order PDEs can be written as advection-diffusion problems:

$$\frac{\partial C}{\partial t} = -v \frac{\partial C}{\partial x} + D \frac{\partial^2 C}{\partial x^2} + f(t, x, C)$$

same for 2-D and 3-D

Example: wave equation in 1-D

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{3}$$

can be written as:

$$\frac{du}{dt} = v$$

$$\frac{\partial v}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

					Partial Diff. Equations	
000 0	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000	000000 000000	000 00 0 0

Three packages for solving PDEs in R

ReacTran: methods for numerical approximation of PDEs [16]

- tran.1D(C, C.up, C.down, D, v, ...)
- tran.2D, tran.3D

deSolve: special solvers for time-varying cases [20]

- ode.1D(y, times, func, parms, nspec, dimens, method, names, ...)
- ode.2D, ode.3D

rootSolve: special solvers for time-invariant cases [19]

- steady.1D(y, time, func, parms, nspec, dimens, method, names, ...)
- steady.2D, steady.3D

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000	• 00000 000000	000 00 0 0
1-D PDEs						

Numerical solution of the wave equation

```
library(ReacTran)
                                              http://desolve.r-forge.r-project.org
wave <- function (t, y, parms) {
  u <- y[1:N]
  v <- y[(N+1):(2*N)]</pre>
  du <- v
  dv <- tran.1D(C = u. C.up = 0. C.down = 0. D = 1.
                dx = xgrid)$dC
                                                 Methods from ReacTran
list(c(du, dv))
}
xqrid <- setup.qrid.1D(-100, 100, dx.1 = 0.2)
    <- xarid$x.mid
х
N <- xqrid$N
uini <- exp(-0.2*x^2)
vini <- rep(0. N)
yini <- c(uini, vini)</pre>
                                                  Numerical method provided by the
times \langle - \text{ seq} (\text{from} = 0, \text{ to} = 50, \text{ by} = 1)
                                                         deSolve package
out <- ode.1D(yini, times, wave, parms, method = "adams",
               names = c("u", "v"), dimens = N)
image(out. grid = x)
```

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000 000000000000000000000000000000000	000000	000 00 0 0

Plotting 1-D PDEs: matplot.1D

```
+ xlab = "x", ylab = "u", type = "l", lwd = 2, xlim = c(-50, 50), col="black")
```

イロト イヨト イヨト

u

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000	000 00 0 0
1 0 005						

<ロト <回ト < 注ト < 注ト

æ

Plotting 1-D PDEs: image

```
> image(out, which = "u", grid = x)
```


times

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000 00000000000000000	000000	000 00 0 0

Plotting 1-D PDEs: persp plots

> image(out, which = "u", grid = x, method = "persp", border = NA, + col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60)

u

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000 000000	000 00 0 0

Exercise: the Brusselator

Problem formulation [6]

The Brusselator is a model for an auto-catalytic chemical reaction between two products, A and B, and producing also C and D in a number of intermediary steps.

$$\begin{array}{cccc} A & \stackrel{k_1}{\longrightarrow} & X_1 \\ B + X_1 & \stackrel{k_2}{\longrightarrow} & X_2 + C \\ 2X_1 + X_2 & \stackrel{k_3}{\longrightarrow} & 3X_1 \\ X_1 & \stackrel{k_4}{\longrightarrow} & D \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where the k_i are the reaction rates.

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000 0	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000	000000 000000	000 00 0 0
1-D PDFs						

Exercise: Implement the Brusselator in 1-D Equations for X1 and X2

$$\frac{\partial X_1}{\partial t} = D_{X_1} \frac{\partial^2 X_1}{\partial x^2} + 1 + X_1^2 X_2 - 4X_1$$
$$\frac{\partial X_2}{\partial t} = D_{X_2} \frac{\partial^2 X_2}{\partial x^2} + 3X_1 - X_1^2 X_2$$

Tasks

- ▶ The grid x extends from 0 to 1, and consists of 50 cells.
- Initial conditions:

$$X_1(0) = 1 + sin(2 * \pi * x), X_2(0) = 3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Generate output for $t = 0, 1, \dots 10$.
- Use file implementing the wave equation as a template: examples/wave.R.txt

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 0 0
2-D PDEs						

2-D wave equation: Sine-Gordon

Problem formulation

The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial differential equation involving the sine of the dependent variable.

$$\frac{\partial^2 u}{\partial t^2} = D \frac{\partial^2 u}{\partial x^2} + D \frac{\partial^2 u}{\partial y^2} - \sin u$$
(5)

Rewritten as two first order differential equations:

$$\frac{du}{dt} = v \frac{\partial v}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + D \frac{\partial^2 u}{\partial y^2} - \sin u$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 0000	00000	000000 00000	000 00 0 0
A D DDE						

2-D Sine-Gordon in R

grid:

```
> Nx <- Ny <- 100
> xgrid <- setup.grid.1D(-7, 7, N = Nx); x <- xgrid$x.mid
> ygrid <- setup.grid.1D(-7, 7, N = Ny); y <- ygrid$x.mid</pre>
```

derivative function:

```
> sinegordon2D <- function(t, C, parms) {
+ u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
+ v <- matrix(nrow = Nx, ncol = Ny, data = C[(Nx*Ny+1) : (2*Nx*Ny)])
+ dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0, C.y.up = 0, C.y.down = 0,
+ D.x = 1, D.y = 1, dx = xgrid, dy = ygrid)$dC - sin(u)
+ list(c(v, dv))
+ }</pre>
```

initial conditions:

solution:

```
> out <- ode.2D (y = c(uini,vini), times = 0:3, parms = 0, func = sinegordon2D,
+ names = c("u", "v"), dimens = c(Nx, Ny), method = "ode45")
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000 0	0000000 0000 00	00000 000000 00	0 00000000 00000	00000 000000000000000000000000000000000	000000	000 00 0 0
2-D PDEs						

Plotting 2-D PDEs: image plots

> image(out, which = "u", grid = list(x, y), mfrow = c(2,2), ask = FALSE)

u

u

х

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000 000000000000000000000000000000000	000000	000 00 0 0

Plotting 2-D PDEs: persp plots

> image(out, which = "u", grid = list(x, y), method = "persp", border = NA, -hi = 60,

mfrow = c(2,2), ask = FALSE)+

u

u

u

u

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000	000 00 0 0

Movie-like output of 2-D PDEs

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

			Plotting	Forcings + Events	Partial Diff. Equations	Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000	000000	000 00 0 0
2-D PDEs						

Exercise: Implement the Brusselator in 2-D Equations

$$\frac{\partial X_1}{\partial t} = D_{X_1} \frac{\partial^2 X_1}{\partial x^2} + D_{X_1} \frac{\partial^2 X_1}{\partial y^2} + 1 + X_1^2 X_2 - 4X_1$$

$$\frac{\partial X_2}{\partial t} = D_{X_2} \frac{\partial^2 X_1}{\partial x^2} + D_{X_2} \frac{\partial^2 X_1}{\partial y^2} + 3X_1 - X_1^2 X_2$$

Tasks

- ▶ The grids x and y extend from 0 to 1, and consist of 50 cells.
- Parameter settings: diffusion coefficient:

$$D_{X_1} = 2; D_{X_2} = 8 * D_{X_1}$$

- Initial condition for X_1 , X_2 : random numbers inbetween 0 and 1.
- Generate output for t = 0, 1, ... 8
- ► Use the file implementing the Sine-Gordon equation as a template: examples/sinegordon.R.txt

000 0000000 00000 0 00000 00000 0000 000 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Speeding up</th></t<>							Speeding up
	000 0	0000000 0000 00	00000 000000 00	000000	00000 00000000000000000	000000 000000	000 00 0 0

Speeding up: Matrices and compiled code

Introduction Model Specification				Diff. Equations Speeding up
000 000000 0 0000 00	00000 0 000000000000000000000000000000	00000 0 000000000000000	0000	000 000 000 00 0 0

Methods for speeding up

- Use matrices,
- Implement essential parts in compiled code (Fortran, C),
- Implement the full method in compiled code.

Formulating a model with matrices and vectors can lead to a considerable speed gain – and compact code – while retaining the full flexibility of R. The use of compiled code saves even more CPU time at the cost of a higher development effort.

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 00000	00000	000000 000000	00 00 00
Licing matricos						

Use of matrices

A Lotka-Volterra model with 4 species

```
model <- function(t, n, parms) {</pre>
>
      with(as.list(c(n, parms)), {
+
        dn1 < -r1 * n1 - a13 * n1 * n3
+
       dn2 < r2 * n2 - a24 * n2 * n4
+
       dn3 <- a13 * n1 * n3 - r3 * n3
+
+
        dn4 < -a24 * n2 * n4 - r4 * n4
+
    return(list(c(dn1, dn2, dn3, dn4)))
+
   })
+ }
> parms <- c(r1 = 0.1, r2 = 0.1, r3 = 0.1, r4 = 0.1, a13 = 0.2, a24 = 0.1)
> times = seq(from = 0, to = 500, by = 0.1)
> n0 = c(n1 = 1, n2 = 1, n3 = 2, n4 = 2)
> svstem.time(out <- ode(n0, times, model, parms))</pre>
  user system elapsed
   3.02
        0.00
                   3.02
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Source: examples/lv-plain-or-matrix.R.txt

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 000000000000000000000000000000000000	00000 000000000000000000000000000000000	000000 000000	000 00 00
Using matrices						

Use of matrices

A Lotka-Volterra model with 4 species

```
> model <- function(t, n, parms) {</pre>
+ with(parms, {
+ dn < -r * n + n * (A \% \% n)
+ return(list(c(dn)))
   7)
+
+ }
> parms <- list(
+ r = c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1)
  A = matrix(c(0.0, 0.0, -0.2, 0.0, \# prey 1)
+
                0.0, 0.0, 0.0, -0.1, # prey 2
+
               0.2, 0.0, 0.0, 0.0, # predator 1; eats prey 1
+
+
               0.0, 0.1, 0.0, 0.0), # predator 2; eats prey 2
+
                nrow = 4, ncol = 4, byrow = TRUE)
+ )
> system.time(out <- ode(n0, times, model, parms))</pre>
  user system elapsed
  1.66
          0.00 1.70
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
Source: examples/lv-plain-or-matrix.R.txt
```

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0000000	00000	000000 000000	000 00 00
Using matrices						

Results

- plot(out) will show the results.
- Note that the "plain" version has only 1 to 1 connections, but the matrix model is already full connected (with most connections are zero). The comparison is insofar unfair that the matrix version (despite faster execution) is more powerful.
- Exercise: Create a fully connected model in the plain version for a fair comparison.
- A parameter example (e.g. for weak coupling) can be found on: http: //tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 00
Compiled code						

Using compiled code

All solvers of deSolve

allow direct communication between solvers and a compiled model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

See vignette ("compiledCode") [15]

Principle

- Implement core model (and only this) in C or Fortran,
- Use data handling, storage and plotting facilities of R.

examples/compiled_lorenz/compiledcode.svg

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	0 0000000 00000	00000	000000 000000	000 00 00
Compiled code						

The End

Thank you!

More Info: http://desolve.r-forge.r-project.org

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 • 0
Finally						

Acknowledgments

Citation

A lot of effort went in creating this software; please cite it when using it.

- ▶ to cite deSolve: [20], rootSolve [19], ReacTran [16],
- Some complex examples can be found in [18],
- A framework to fit differential equation models to data is FME [17],
- ► A framework for ecological modelling is simecol [10].

Acknowledgments

 None of this would be possible without the splendid work of the R Core Team [11],

- This presentation was created with Sweave [7],
- Creation of the packages made use of Rforge [21].

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 0000000 00	0 20000000 0000	00000	000000 000000	000 00 00
F 11						

Bibliography I

- K E Brenan, S L Campbell, and L R Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM Classics in Applied Mathematics, 1996.
- [2] P N Brown, G D Byrne, and A C Hindmarsh. Vode, a variable-coefficient ode solver. SIAM Journal on Scientific and Statistical Computing, 10:1038–1051, 1989.
- [3] E Hairer, S. P. Norsett, and G Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2009.
- [4] E Hairer and G Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2010.
- [5] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. Stepleman, editor, Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation, pages 55–64. IMACS / North-Holland, Amsterdam, 1983.
- [6] R. Lefever, G. Nicolis, and I. Prigogine. On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium. *Journal of Chemical Physics*, 47:1045–1047, 1967.
- Friedrich Leisch.
 Dynamic generation of statistical reports using literate data analysis.
 In W. Härdle and B. Rönz, editors, COMPSTAT 2002 Proceedings in Computational Statistics, pages 575–580, Heidelberg, 2002.
 Physica-Verlag.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[8] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. *Science*, 197:287–289, 1977.

			Plotting	Forcings + Events		Speeding up
000	0000000 0000 00	00000 000000 00	0 00000000 00000	00000	000000 000000	000 00 00
Finally						

Bibliography II

- [9] Linda R. Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. *SIAM Journal on Scientific and Statistical Computing*, 4:136–148, 1983.
 [10] Thomas Petzoldt and Karsten Rinke. simecol: An object-oriented framework for ecological modeling in R. *Journal of Statistical Software*, 22(9):1–31, 2007.
 [11] R Development Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.
- [12] O.E. Rossler. An equation for continous chaos. *Physics Letters A*, 57 (5):397–398, 1976.
- [13] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB. Cambridge University Press, Cambridge, 2003.
- [14] L.F Shampine and S. Thompson. Solving ddes in matlab. App. Numer. Math., 37:441–458, 2001.
- [15] K Soetaert, T Petzoldt, and RW Setzer. *R-package deSolve, Writing Code in Compiled Languages*, 2009. package vignette.
- [16] Karline Soetaert and Filip Meysman. Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environmental modelling and software, page in press, 2011.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

			Plotting	Forcings + Events		Speeding up
000 0	0000000 0000 00	00000 000000 00	000000	00000	000000 000000	000 00 0 0
Finally						

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bibliography III

- [17] Karline Soetaert and Thomas Petzoldt. Inverse modelling, sensitivity and monte carlo analysis in R using package FME. *Journal of Statistical Software*, 33(3):1–28, 2010.
- [18] Karline Soetaert and Thomas Petzoldt. Solving ODEs, DAEs, DDEs and PDEs in R. Journal of Numerical Analysis, Industrial and Applied Mathematics, in press, 2011.
- [19] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Solving Differential Equations in R. *The R Journal*, 2(2):5–15, December 2010.
- [20] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33(9):1–25, 2010.
- [21] Stefan Theußl and Achim Zeileis. Collaborative Software Development Using R-Forge. The R Journal, 1(1):9–14, May 2009.
- [22] B. van der Pol and J. van der Mark. Frequency demultiplication. Nature, 120:363–364, 1927.