Differential Equations in R

Tutorial useR conference 2011

Karline Soetaert, \& Thomas Petzoldt

Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute of Ecology (NIOO-KNAW)
P.O.Box 140

4400 AC Yerseke
The Netherlands
k.soetaert@nioo.knaw.nl

Technische Universität Dresden
Faculty of Forest- Geo- and Hydrosciences
Institute of Hydrobiology
01062 Dresden
Germany
thomas.petzoldt@tu-dresden.de

September 15, 2011

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,
- Forcing functions and events
- Partial differential equations with ReacTran
- Speeding up

Installing the R Software and packages

Downloading R from the R-project website: http://www.r-project.org

Packages can be installed from within the R-software:

R R Console		
File	Edit Misc	Packages Windows Help
$>$		Load package...
$>$		Set CRAN mirror...
$>$		Select repositories...
$>$		Install package(s)...
$>$		Update packages...
$>$		Install package(s) from local zip files...

or via commandline

```
install.packages("deSolve", dependencies = TRUE)
```


Installing a suitable editor

Tinn-R is suitable (if you are a Windows adept)

Rstudio is very promising

Necessary packages

Several packages deal with differential equations

- deSolve: main integration package
- rootSolve: steady-state solver
- bvpSolve: boundary value problem solvers
- ReacTran: partial differential equations
- simecol: interactive environment for implementing models

All packages have at least one author in common
$\rightarrow{ }^{* *}$ Consistency** in interface

Getting help

- ?deSolve opens the main help file
- Index at bottom of this page opens an index page
- One main manual (or "vignette"):
- vignette("deSolve")
- vignette("rootSolve")
- vignette("bvpSolve")
- vignette("ReacTran")
- vignette("simecol-introduction")
- Several dedicated vignettes:
- vignette("compiledCode")
- vignette("bvpTests")
- vignette("PDE")
- vignette("simecol-Howto")

Model specification

Let's begin ...

Logistic growth

Differential equation

$$
\frac{d N}{d t}=r \cdot N \cdot\left(1-\frac{N}{K}\right)
$$

Analytical solution

$$
N_{t}=\frac{K N_{0} e^{r t}}{K+N_{0}\left(e^{r t}-1\right)}
$$

R implementation

```
> logistic <- function(t, r, K, NO) {
+ K*NO * exp(r*t)/(K + NO * (exp(r*t) - 1))
+ }
> plot(0:100, logistic(t = 0:100, r = 0.1, K = 10, NO = 0.1))
```


Numerical simulation in R

Why numerical solutions?

- Not all systems have an analytical solution,
- Numerical solutions allow discrete forcings, events, ...

Why R?

- If standard tool for statistics, why $\times \$ \$ \$$ for dynamic simulations?
- Other reasons will show up at this conference (useR!2011).

Numerical solution of the logistic equation

```
1ibrary(deSolve)
model <- function (time, y, parms) {
    with(as.list(c(y, parms)), {
        dN <- r*N* (1 - N/K) ए Differential equation
        list(dN)
    })
}
y <- c(N = 0.1)
parms <- c(r = 0.1, K = 10)
times <- seq(0, 100, 1)
out <- ode(y, times, mode1, parms)
p1ot(out)

\section*{Inspecting output}
- Print to screen
> head(out, \(n=4\) )
\begin{tabular}{lrr} 
& time & N \\
{\([1]\),} & 0 & 0.1000000 \\
{\([2]\),} & 1 & 0.1104022 \\
{\([3]\),} & 2 & 0.1218708 \\
{\([4]\),} & 3 & 0.1345160
\end{tabular}
- Summary
> summary (out)
\begin{tabular}{lr} 
& N \\
Min. & 0.100000 \\
1st Qu. & 1.096000 \\
Median & 5.999000 \\
Mean & 5.396000 \\
3rd Qu. & 9.481000 \\
Max. & 9.955000 \\
N & 101.000000 \\
sd & 3.902511
\end{tabular}

\section*{Inspecting output -ctd}
- Plotting
> plot(out, main = "logistic growth", lwd = 2)
logistic growth


\section*{Inspecting output -ctd}
- Diagnostic features of simulation > diagnostics (out)
lsoda return code
return code (idid) = 2
Integration was successful.

INTEGER values

1 The return code : 2
2 The number of steps taken for the problem so far: 105
3 The number of function evaluations for the problem so far: 211
5 The method order last used (successfully): 5
6 The order of the method to be attempted on the next step: 5
7 If return flag \(=-4,-5\) : the largest component in error vector 0
8 The length of the real work array actually required: 36
9 The length of the integer work array actually required: 21
14 The number of Jacobian evaluations and LU decompositions so far: 0
15 The method indicator for the last succesful step, \(1=\) adams (nonstiff), 2= bdf (stiff): 1
16 The current method indicator to be attempted on the next step, \(1=\) adams (nonstiff), \(2=\) bdf (stiff): 1

\section*{Coupled ODEs: the rigidODE problem}

\section*{Problem [3]}
- Euler equations of a rigid body without external forces.
- Three dependent variables \(\left(y_{1}, y_{2}, y_{3}\right)\), the coordinates of the rotation vector,
- \(I_{1}, I_{2}, l_{3}\) are the principal moments of inertia.

\section*{Coupled ODEs: the rigidODE equations}

Differential equation
\[
\begin{aligned}
& y_{1}^{\prime}=\left(I_{2}-l_{3}\right) / l_{1} \cdot y_{2} y_{3} \\
& y_{2}^{\prime}=\left(l_{3}-l_{1}\right) / l_{2} \cdot y_{1} y_{3} \\
& y_{3}^{\prime}=\left(l_{1}-l_{2}\right) / l_{3} \cdot y_{1} y_{2}
\end{aligned}
\]

Parameters
\[
I_{1}=0.5, I_{2}=2, I_{3}=3
\]

Initial conditions
\[
y_{1}(0)=1, y_{2}(0)=0, y_{3}(0)=0.9
\]

\section*{Coupled ODEs: the rigidODE problem}

\section*{R implementation}
```

> library(deSolve)
> rigidode <- function(t, y, parms) {

+ dy1 <- -2 * y[2] * y[3]
+ dy2 <- 1.25* y[1] * y[3]
+ dy3 <- -0.5* y[1] * y[2]
+ list(c(dy1, dy2, dy3))
+ }
> yini <- c(y1 = 1, y2 = 0, y3 = 0.9)
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode (times = times, y = yini, func = rigidode, parms = NULL)
> head (out, n = 3)
time y1
y2
y3
[1,] 0.00 1.0000000 0.00000000 0.9000000
[2,] 0.01 0.9998988 0.01124925 0.8999719
[3,] 0.02 0.9995951 0.02249553 0.8998875

```

\section*{Coupled ODEs: plotting the rigidODE problem}

\author{
> plot (out)
}
> library(scatterplot3d)
\(>\operatorname{par}(\operatorname{mar}=c(0,0,0,0))\)
> scatterplot3d(out[,-1], xlab = "", ylab = "", zlab = "", label.tick.marks = FALSE)




time

\section*{Exercise: the Rossler equations}

Differential equation [12]
\[
\begin{aligned}
y_{1}^{\prime} & =-y_{2}-y_{3} \\
y_{2}^{\prime} & =y_{1}+a \cdot y_{2} \\
y_{3}^{\prime} & =b+y_{3} \cdot\left(y_{1}-c\right)
\end{aligned}
\]

Parameters
\[
a=0.2, b=0.2, c=5
\]

Initial Conditions
\[
y_{1}=1, y_{2}=1, y_{3}=1
\]

\section*{Exercise: the Rossler equations - ctd}

Tasks:
- Solve the ODEs on the interval \([0,100]\)
- Produce a 3-D phase-plane plot
- Use file examples/rigidODE.R.txt as a template

\section*{Solvers ...}

Solver overview, stiffness, accuracy

\section*{Integration methods: package deSolve [20]}


\section*{Solver overview: package deSolve}
\begin{tabular}{|c|c|}
\hline Function & Description \\
\hline lsoda [9] & IVP ODEs, full or banded Jacobian, automatic choice for stiff or non-stiff method \\
\hline lsodar [9] & same as lsoda; includes a root-solving procedure. \\
\hline \[
\begin{aligned}
& \text { lsode [5], } \\
& \text { vode [2] }
\end{aligned}
\] & IVP ODEs, full or banded Jacobian, user specifies if stiff (bdf) or non-stiff (adams) \\
\hline lsodes [5] & IVP ODEs; arbitrary sparse Jacobian, stiff \\
\hline \[
\begin{aligned}
& \text { rk4, rk, } \\
& \text { euler }
\end{aligned}
\] & IVP ODEs; Runge-Kutta and Euler methods \\
\hline radau [4] & IVP ODEs+DAEs; implicit Runge-Kutta method \\
\hline daspk [1] & IVP ODEs+DAEs; bdf and adams method \\
\hline zvode & IVP ODEs, like vode but for complex variables \\
\hline adapted from [19] & \\
\hline
\end{tabular}

\section*{Solver overview: package deSolve}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Solver & Notes & 告 &  & \[
\frac{\underset{N}{x}}{\frac{\pi}{i n}}
\] & \[
\frac{i \pi}{3}
\] &  & \[
\begin{aligned}
& \text { n } \\
& \stackrel{0}{0} \\
& \stackrel{\rightharpoonup}{4}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 区 } \\
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{\rightharpoonup}{0}
\end{aligned}
\] & \begin{tabular}{l} 
읗 \\
¢ \\
¢ \\
\hline
\end{tabular} \\
\hline |soda/lsodar & automatic method selection & auto & x & & & x & X & x & \\
\hline lisode & bdf, adams, ... & user defined & X & & & X & X & X & \\
\hline Isodes & sparse Jacobian & yes & X & & & X & X & X & \\
\hline vode & bdf, adams, ... & user defined & X & & & & X & X & \\
\hline zvode & complex numbers & user defined & X & & & & X & X & \\
\hline daspk & DAE Solver & yes & X & X & X & & x & X & \\
\hline radau & DAE; implicit RK & yes & X & X & & X & X & X & \\
\hline rk, rk4, euler & euler, ode23, ode \(45, \ldots\) rkMethod & no & X & & & & X & & X \\
\hline iteration & returns state at t+dt & no & X & & & & X & & X \\
\hline
\end{tabular}
- ode, ode.band, ode.1D, ode.2D, ode.3D: top level functions (wrappers)
- red: functionality added by us

\section*{Options of solver functions}

\section*{Top level function}
> ode(y, times, func, parms,
+ method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
    "euler", "rk4", "ode23", "ode45", "radau",
    "bdf", "bdf_d", "adams", "impAdams", "impAdams_d",
    "iteration"), ...)

\section*{Workhorse function: the individual solver}
```

> lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,

+ jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
+ verbose = FALSE, nroot = 0, tcrit = NULL,
+ hmin = O, hmax = NULL, hini = O, ynames = TRUE,
+ maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
+ maxsteps = 5000, dllname = NULL, initfunc = dllname,
+ initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
+ outnames = NULL, forcings = NULL, initforc = NULL,
+ fcontrol = NULL, events = NULL, lags = NULL,...)

```

\section*{Arghhh, which solver and which options???}

\section*{Problem type?}
- ODE: use ode,
- DDE: use dede,
- DAE: daspk or radau,
- PDE: ode.1D, ode.2D, ode.3D,
... others for specific purposes, e.g. root finding, difference equations (euler, iteration) or just to have a comprehensive solver suite (rk4, ode45).

\section*{Stiffness}
- default solver lisoda selects method automatically,
- adams or bdf may speed up a little bit if degree of stiffness is known,
- vode or radau may help in difficult situations.

\section*{Solvers for stiff systems}

\section*{Stiffness}
- Difficult to give a precise definition.
\(\approx\) system where some components change more rapidly than others.
Sometimes difficult to solve:
- solution can be numerically unstable,
- may require very small time steps (slow!),
- deSolve contains solvers that are suitable for stiff systems,

But: "stiff solvers" slightly less efficient for "well behaving" systems.
- Good news: 1soda selects automatically between stiff solver (bdf) and nonstiff method (adams).

\section*{Van der Pol equation}

Oscillating behavior of electrical circuits containing tubes [22]. \(2^{\text {nd }}\) order ODE
\[
y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y=0
\]
... must be transformed into two \(1^{\text {st }}\) order equations
\[
\begin{aligned}
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =\mu \cdot\left(1-y_{1}^{2}\right) \cdot y_{2}-y_{1}
\end{aligned}
\]
- Initial values for state variables at \(t=0: y_{1_{(t=0)}}=2, y_{2_{(t=0)}}=0\)
- One parameter: \(\mu=\) large \(\rightarrow\) stiff system; \(\mu=\) small \(\rightarrow\) non-stiff.

\section*{Model implementation}
```

> library(deSolve)
> vdpol <- function (t, y, mu) {

+ list(c(
+ y[2],
+ mu * (1 - y[1]^2) * y[2] - y[1]
+))
+ }
> yini <- c(y1 = 2, y2 = 0)
> stiff <- ode(y = yini, func = vdpol, times = 0:3000, parms = 1000)
> nonstiff <- ode(y = yini, func = vdpol, times = seq(0, 30, 0.01), parms = 1)
> head(stiff, n = 5)
time y1
y2
[1,] 0 2.000000 0.0000000000
[2,] 1 1.999333-0.0006670373
[3,] 2 1.998666-0.0006674088
[4,] 3 1.997998-0.0006677807
[5,] 4 1.997330-0.0006681535

```

\section*{Interactive exercise}
- The following link opens in a web browser. It requires a recent version of Firefox, Internet Explorer or Chrome, ideal is Firefox 5.0 in full-screen mode. Use Cursor keys for slide transition:
- Left cursor guides you through the full presentation.
- Mouse and mouse wheel for full-screen panning and zoom.
- Pos1 brings you back to the first slide.
- examples/vanderpol.svg
- The following opens the code as text file for life demonstrations in R
- examples/vanderpol.R.txt

\section*{Plotting}

\section*{Stiff solution}
> plot(stiff, type = "l", which = "y1",
\(+\quad l w d=2, y l a b=" y "\),
\(+\quad\) main \(=\) "IVP ODE, stiff")

\section*{IVP ODE, stiff}


\section*{Nonstiff solution}
> plot(nonstiff, type = "I", which = "y1",
\(+\quad 1 w d=2\), ylab \(=" y "\),
\(+\quad\) main \(=\) "IVP ODE, nonstiff")

IVP ODE, nonstiff


\section*{Default solver, 1soda:}
```

> system.time(

+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000)
+)
user system elapsed
0.59 0.00 0.61
> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1)
+)
user

```
Implicit solver, bdf:
> system.time (
+ stiff <- ode (yini, 0:3000, vdpol, parms = 1000, method = "bdf")
+ )
    user system elapsed
    \(\begin{array}{lll}0.55 & 0.00 & 0.60\end{array}\)
> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by \(=0.01\) ), vdpol, parms \(=1\), method \(=\) "bdf")
+ )
    user system elapsed
    \(0.36 \quad 0.00 \quad 0.36\)
\(\Rightarrow\) Now use other solvers, e.g. adams, ode45, radau.

\section*{Results}

Timing results; your computer may be faster:
\begin{tabular}{lll}
\hline solver & non-stiff & stiff \\
\hline ode23 & 0.37 & 271.19 \\
Isoda & 0.26 & 0.23 \\
adams & 0.13 & 616.13 \\
bdf & 0.15 & 0.22 \\
radau & 0.53 & 0.72 \\
\hline
\end{tabular}

Comparison of solvers for a stiff and a non-stiff parametrisation of the van der Pol equation (time in seconds, mean values of ten simulations on an AMD AM2 X2 3000 CPU).

\section*{Accuracy and stability}
- Options atol and rtol specify accuracy,
- Stability can be influenced by specifying hmax and maxsteps.

\section*{Accuracy and stability - ctd}
atol (default \(10^{-6}\) ) defines absolute threshold,
- select appropriate value, depending of the size of your state variables,
- may be between \(\approx 10^{-300}\) (or even zero) and \(\approx 10^{300}\).
rtol (default \(10^{-6}\) ) defines relative threshold,
- It makes no sense to specify values \(<10^{-15}\) because of the limited numerical resolution of double precision arithmetics ( \(\approx 16\) digits).
hmax is automatically set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. Sometimes, it may be set to a smaller value to improve robustness of a simulation.
hmin should normally not be changed.
Example: Setting rtol and atol: examples/PCmod_atol_0.R.txt

\section*{Plotting, scenario comparison, observations}

\section*{Plotting and printing}

Methods for plotting and extracting data in deSolve
- subset extracts specific variables that meet certain constraints.
- plot, hist create one plot per variable, in a number of panels
- image for plotting 1-D, 2-D models
- plot.1D and matplot.1D for plotting 1-D outputs
- ?plot. deSolve opens the main help file
rootSolve has similar functions
- subset extracts specific variables that meet certain constraints.
- plot for 1-D model outputs, image for plotting 2-D, 3-D model outputs
- ?plot. steady1D opens the main help file

\section*{Chaos}

\section*{The Lorenz equations}
- chaotic dynamic system of ordinary differential equations
- three variables, \(X, Y\) and \(Z\) represent idealized behavior of the earth's atmosphere.
```

> chaos <- function(t, state, parameters) {

+ with(as.list(c(state)), {
+
+ dx <- -8/3*x + y* z
+ dy <- -10 * (y - z)
+ dz <- -x * y + 28 * y - z
+
+ list(c(dx, dy, dz))
+ })
+ }
> yini <- c(x = 1, y = 1, z = 1)
> yini2 <- yini + c(1e-6, 0, 0)
> times <- seq(0, 100, 0.01)
> out <- ode(y = yini, times = times, func = chaos, parms = 0)
> out2 <- ode(y = yini2, times = times, func = chaos, parms = 0)

```

\section*{Plotting multiple scenarios}
- The default for plotting one or more objects is to draw a line plot
- We can plot as many objects of class deSolve as we want.
- By default different outputs get different colors and line types
\(>\) plot(out, out2, xlim \(=c(0,30), \operatorname{lwd}=2\), lty \(=1\) )




\section*{Changing the panel arrangement}

\section*{Default}

The number of panels per page is automatically determined up to \(3 \times 3\) (par (mfrow \(=c(3,3))\) ).
Use mfrow() or mfcol() to overrule
> plot(out, out2, xlim \(=c(0,30), \operatorname{lwd}=2, \operatorname{lty}=1\), mfrow \(=c(1,3))\)




\section*{Important:}
upon returning the default mfrow is \({ }^{* * N O T * *}\) restored

\section*{Changing the defaults}
- We can change the defaults of the dataseries, (col, lty, etc.)
- will be effective for all figures
- We can change the default of each figure, (title, labels, etc.)
- vector input can be specified by a list; NULL will select the default
```

> plot(out, out2, col = c("blue", "orange"), main = c("Xvalue", "Yvalue", "Zvalue"),

+ xlim = list (c(20, 30), c(25, 30), NULL), mfrow = c(1, 3))

```


\section*{R's default plot}
- If we select \(x\) and \(y\)-values, R's default plot will be used > plot (out[,"x"], out[,"y"], pch = ".", main = "Lorenz butterfly", \(+\quad x l a b=" x ", y l a b=" y ")\)


\section*{R's default plot}
- Use subset to select values that meet certain conditions:
> XY <- subset (out, select = c ("x", "y"), subset = y < 10 \& x < 40)
> plot(XY, main = "Lorenz butterfly", xlab = "x", ylab = "y", pch = ".")


\section*{Plotting multiple scenarios}

\section*{Simple if number of outputs is known}
```

> derivs <- function(t, y, parms)

+ with (as.list(parms), list(r * y * (1-y/K)))
> parms <- c(r = 1, K = 10)
> yini <- c(y = 2)
> yini2 <- c(y = 12)
> times <- seq(from = 0, to = 30, by = 0.1)
> out <- ode(y = yini, parms = parms, func = derivs, times = times)
> out2 <- ode(y = yini2, parms = parms, func = derivs, times = times)
> plot(out, out2, lwd = 2)

```


\section*{Plotting multiple scenarios}

\section*{Use a list if many or unknown number of outputs}
```

> outlist <- list()
> plist <- cbind(r = runif(30, min = 0.1, max = 5),

+ K = runif(30, min = 8, max = 15))
> for (i in 1:nrow(plist))
+ outlist[[i]] <- ode(y = yini, parms = plist[i,], func = derivs, times = times)
> plot(out, outlist)

```


\section*{Observed data}

Arguments obs and obspar are used to add observed data
> obs2 <- data.frame (time \(=c(1,5,10,20,25), \mathrm{y}=c(12,10,8,9,10))\)
> plot(out, out2, obs = obs2, obspar = list (col = "red", pch = 18, cex = 2))


\section*{Observed data}

\section*{A list of observed data is allowed}
> obs2 <- data.frame (time \(=c(1,5,10,20,25), \mathrm{y}=c(12,10,8,9,10))\)
> obs1 <- data.frame (time \(=c(1,5,10,20,25), \mathrm{y}=c(1,6,8,9,10))\)
> plot(out, out2, col = c("blue", "red"), lwd = 2,
\(+\quad\) obs = list(obs1, obs2),
\(+\quad\) obspar \(=\) list (col = c("blue", "red"), pch = 18, cex = 2))


\title{
Under control: Forcing functions and events
}

\section*{Discontinuities in dynamic models}

Most solvers assume that dynamics is smooth However, there can be several types of discontinuities:
- Non-smooth external variables
- Discontinuities in the derivatives
- Discontinuites in the values of the state variables

A solver does not have large problems with first two types of discontinuities, but changing the values of state variables is much more difficult.

\section*{External variables in dynamic models}
... also called forcing functions

Why external variables?
- Some important phenomena are not explicitly included in a differential equation model, but imposed as a time series. (e.g. sunlight, important for plant growth is never "modeled").
- Somehow, during the integration, the model needs to know the value of the external variable at each time step!

\section*{External variables in dynamic models}

\section*{Implementation in R}
- R has an ingenious function that is especially suited for this task: function approxfun
- It is used in two steps:
- First an interpolating function is constructed, that contains the data. This is done before solving the differential equation.
```

afun <- approxfun(data)

```
- Within the derivative function, this interpolating function is called to provide the interpolated value at the requested time point \((\mathrm{t})\) :
```

tvalue <- afun(t)

```
?forcings will open a help file

\section*{Example: Predator-Prey model with time-varying input}

This example is from [15]
Create an artificial time-series
```

> times <- seq(0, 100, by = 0.1)
> signal <- as.data.frame(list(times = times, import = rep(0, length(times))))
> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)
> signal[8:12,]
times import

8	0.7	0
9	0.8	0
10	0.9	0
11	1.0	1
12	1.1	1

```

Create the interpolating function, using approxfun
```

> input <- approxfun(signal, rule = 2)
> input(seq(from = 0.98, to = 1.01, by = 0.005))
[1] 0.80 0.85 0.90 0.95 1.00 1.00 1.00

```

\section*{A Predator-Prey model with time-varying input}

\section*{Use interpolation function in ODE function}
```

> SPCmod <- function(t, x, parms) {

+ with(as.list(c(parms, x)), {
+
+ import <- input(t)
+
+ dS <- import - b * S * P + g * C
+ dP <- c*S * P - d * C * P
+ dC <- e * P * C - f*C
+ res <- c(dS, dP, dC)
+ list(res, signal = import)
+ })
+ }
> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0)
> xstart <- c(S = 1, P = 1, C = 1)
> out <- ode(y = xstart, times = times, func = SPCmod, parms)

```

\section*{Plotting model output}
> plot(out)


\section*{Discontinuities in dynamic models: Events}

\section*{What?}
- An event is when the values of state variables change abruptly.

Events in Most Programming Environments
- When an event occurs, the simulation needs to be restarted.
- Use of loops etc. ...
- Cumbersome, messy code

\section*{Events in R}
- Events are part of a model; no restart necessary
- Separate dynamics inbetween events from events themselves
- Very neat and efficient!

\section*{Discontinuities in dynamic models, Events}

Two different types of events in R
- Events occur at known times
- Simple changes can be specified in a data.frame with:
- name of state variable that is affected
- the time of the event
- the magnitude of the event
- event method ("replace", "add", "multiply")
- More complex events can be specified in an event function that returns the changed values of the state variables function(t, y, parms, ...).
- Events occur when certain conditions are met
- Event is triggered by a root function
- Event is specified in an event function
?events will open a help file

\section*{A patient injects drugs in the blood}

\section*{Problem Formulation}
- Describe the concentration of the drug in the blood
- Drug injection occurs at known times \(\rightarrow\) data.frame

Dynamics inbetween events
- The drug decays with rate b
- Initially the drug concentration \(=0\) :
```

> pharmaco <- function(t, blood, p) {

+ dblood <- - b * blood
+ list(dblood)
+ }
> b <- 0.6
> yini <- c(blood = 0)

```

\section*{A patient injects drugs in the blood}

\section*{Specifying the event}
- Daily doses, at same time of day
- Injection makes the concentration in the blood increase by 40 units.
- The drug injections are specified in a special event data.frame
```

> injectevents <- data.frame(var = "blood",
time = 0:20,
value = 40,
method = "add")

```
> head(injectevents)
\begin{tabular}{lrrrr} 
& var & time & value method \\
1 blood & 0 & 40 & add \\
2 blood & 1 & 40 & add \\
3 blood & 2 & 40 & add \\
4 blood & 3 & 40 & add \\
5 blood & 4 & 40 & add \\
6 blood & 5 & 40 & add
\end{tabular}

\section*{A patient injects drugs in the blood}

\section*{Solve model}
- Pass events to the solver in a list
- All solvers in deSolve can handle events
- Here we use the "implicit Adams" method
```

> times <- seq(from = 0, to = 10, by = 1/24)
> outDrug <- ode(func = pharmaco, times = times, y = yini,

+ parms = NULL, method = "impAdams",
+ events = list(data = injectevents))

```

\section*{Events}

\section*{plotting model output}
> plot(outDrug)
blood


\section*{An event triggered by a root: A Bouncing Ball}

\section*{Problem formulation [13]}
- A ball is thrown vertically from the ground \((y(0)=0)\)
- Initial velocity \(\left(y^{\prime}\right)=10 \mathrm{~m} \mathrm{~s}^{-1}\); acceleration \(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\)
- When ball hits the ground, it bounces.

ODEs describe height of the ball above the ground \((y)\)

Specified as \(2^{\text {nd }}\) order ODE
\[
\begin{array}{ll}
y^{\prime \prime} & =-g \\
y(0) & =0 \\
y^{\prime}(0) & =10
\end{array}
\]

Specified as \(1^{\text {st }}\) order ODE
\[
\begin{array}{ll}
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =-g \\
y_{1}(0) & =0 \\
y_{2}(0) & =10
\end{array}
\]

\section*{A Bouncing Ball}

\section*{Dynamics inbetween events}
```

> library(deSolve)
> ball <- function(t, y, parms) {

+ dy1 <- y[2]
+ dy2 <- -9.8
+
+ list(c(dy1, dy2))
+ }
> yini <- c(height = 0, velocity = 10)

```

\section*{The Ball Hits the Ground and Bounces}

\section*{Root: the Ball hits the ground}
- The ground is where height \(=0\)
- Root function is 0 when \(y_{1}=0\)
```

> rootfunc <- function(t, y, parms) return (y[1])

```

\section*{Event: the Ball bounces}
- The velocity changes sign (-) and is reduced by \(10 \%\)
- Event function returns changed values of both state variables
```

> eventfunc <- function(t, y, parms) {

+ y[1] <- 0
+ y[2] <- -0.9*y[2]
+ return(y)
+ }

```

\section*{An event triggered by a root: the bouncing ball}

\section*{Solve model}
- Inform solver that event is triggered by root (root = TRUE)
- Pass event function to solver
- Pass root function to solver
```

> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode(times = times, y = yini, func = ball,

+ parms = NULL, rootfun = rootfunc,
+ events = list(func = eventfunc, root = TRUE))

```

\section*{Get information about the root}
```

> attributes(out)\$troot

```
\begin{tabular}{rrrrrrrrr} 
[1] & 2.040816 & 3.877551 & 5.530612 & 7.018367 & 8.357347 & 9.562428 & 10.647001 & 11.623117 \\
[9] & 12.501621 & 13.292274 & 14.003862 & 14.644290 & 15.220675 & 15.739420 & 16.206290 & 16.626472 \\
[17] & 17.004635 & 17.344981 & 17.651291 & 17.926970 & 18.175080 & 18.398378 & 18.599345 & 18.780215 \\
[25] & 18.942998 & 19.089501 & 19.221353 & 19.340019 & 19.446817 & 19.542935 & 19.629441 & 19.707294 \\
[33] & 19.777362 & 19.840421 & 19.897174 & 19.948250 & 19.994217 & & &
\end{tabular}

Events

\section*{An event triggered by a root: the bouncing ball}
```

> plot(out, select = "height")

```


\section*{An event triggered by a root: the bouncing ball} Create Movie-like output
```

for (i in seq(1, 2001, 10)) {
plot(out, which = "height", type = "l", lwd = 1,
main = "", xlab = "Time", ylab = "Height"
)
points(t(out[i,1:2]), pch = 21, lwd = 1, col = 1, cex = 2,
bg = rainbow(30, v = 0.6)[20-abs(out[i,3])+1])
Sys.sleep(0.01)
}

```
Height

\section*{Exercise: Add events to a logistic equation}

\section*{Problem formulation, ODE}

The logistic equation describes the growth of a population:
\[
\begin{aligned}
& y^{\prime}=r \cdot y \cdot\left(1-\frac{y}{K}\right) \\
& r=1, K=10, y_{0}=2
\end{aligned}
\]

\section*{Events}

This population is being harvested according to several strategies:
- There is no harvesting
- Every 2 days the population's density is reduced to \(50 \%\)
- When the species has reached \(80 \%\) of its carrying capacity, its density is halved.

\section*{Exercise: Add events to a logistic equation - ctd}

Tasks:
- Run the model for 20 days
- Implement first strategy in a data.frame
- Second strategy requires root and event function
- Use file examples/logisticEvent.R.txt as a template

\section*{Delay Differential Equations}

\section*{What?}

Delay Differential Equations are similar to ODEs except that they involve past values of variables and/or derivatives.

DDEs in R: R-package deSolve
- dede solves DDEs
- lagvalue provides lagged values of the state variables
- lagderiv provides lagged values of the derivatives

\section*{Example: Chaotic Production of White Blood Cells}

\section*{Mackey-Glass Equation [8]:}
- y: current density of white blood cells,
- \(y_{\tau}\) is the density \(\tau\) time-units in the past,
- first term equation is production rate
- \(b\) is destruction rate
\[
\begin{align*}
& y^{\prime}=a y_{\tau} \frac{1}{1+y_{\tau}^{c}}-b y \\
& y_{\tau}=y(t-\tau)  \tag{1}\\
& y_{t}=0.5 \quad \text { for } t \leq 0
\end{align*}
\]
- For \(\tau=10\) the output is periodic,
- For \(\tau=20\) cell densities display a chaotic pattern

\section*{Solution in R}
```

> library(deSolve)
> retarded <- function(t, y, parms, tau) {

+ tlag <- t - tau
+ if (tlag <= 0)
+ ylag <- 0.5
+ else
+ ylag <- lagvalue(tlag)
+
+ dy <- 0.2 * ylag * 1/(1+ylag^10) - 0.1 * y
+ list(dy = dy, ylag = ylag)
+ }
> yinit <- 0.5
> times <- seq(from = 0, to = 300, by = 0.1)
> yout1 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 10)
> yout2 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 20)

```

\section*{Solution in R}
> plot(yout1, lwd = 2, main = "tau=10", ylab = "y", mfrow = c(2, 2), which = 1)
> plot(yout1[,-1], type = "l", lwd = 2, xlab = "y")
> plot(yout2, lwd = 2, main = "tau=20", ylab = "y", mfrow = NULL, which = 1)
> plot(yout2[,-1], type = "l", lwd = 2, xlab = "y")





\section*{Exercise: the Lemming model}

A nice variant of the logistic model is the DDE lemming model [14]:
\[
\begin{equation*}
y^{\prime}=r \cdot y\left(1-\frac{y(t-\tau)}{K}\right) \tag{2}
\end{equation*}
\]

Use file examples/ddelemming.R.txt as a template to implement this model
- initial condition \(y(t=0)=19.001\)
- parameter values \(r=3.5, \tau=0.74, K=19\)
- history \(y(t)=19\) for \(t<0\)
- Generate output for t in \([0,40]\).

\title{
Diffusion, advection and reaction: Partial differential equations (PDE) with ReacTran
}

\section*{Partial Differential Equations}

PDEs as advection-diffusion problems
Many second-order PDEs can be written as advection-diffusion problems:
\[
\frac{\partial C}{\partial t}=-v \frac{\partial C}{\partial x}+D \frac{\partial^{2} C}{\partial x^{2}}+f(t, x, C)
\]
same for 2-D and 3-D
Example: wave equation in 1-D
\[
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
\]
can be written as:
\[
\begin{align*}
\frac{d u}{d t} & =v  \tag{4}\\
\frac{\partial v}{\partial t} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}
\end{align*}
\]

\section*{Three packages for solving PDEs in R}

ReacTran: methods for numerical approximation of PDEs [16]
- tran.1D(C, C.up, C.down, D, v, ...)
- tran.2D, tran.3D
deSolve: special solvers for time-varying cases [20]
- ode.1D(y, times, func, parms, nspec, dimens, method, names, ...)
- ode.2D, ode.3D
rootSolve: special solvers for time-invariant cases [19]
- steady.1D(y, time, func, parms, nspec, dimens, method, names, ...)
- steady.2D, steady.3D

\section*{Numerical solution of the wave equation}
```

1ibrary(ReacTran) « http://desolve.r-forge.r-project.org
wave <- function (t, y, parms) {
u <- y[1:N]
v <- y[(N+1):(2*N)]
du <- v
dv <- tran.1D(c = u, c.up = 0, c.down = 0, D = 1,
dx = xgrid)$dc
1ist(c(du, dv))
}
xgrid <- setup.grid.1D(-100, 100, d\. 1 = 0.2)
x <- xgrid$x.mid
N <- xgrid\$N
uini <- exp(-0.2*x^2)
vini <- rep(0, N)
yini <- c(uini, vini) Numerical method provided by the
times <- seq (from = 0, to = 50, by = 1) deSolve package
out <- ode.1D(yini, times, wave, parms, method = "adams",
names = c("u", "v"), dimens = N)
image(out, grid = x)

```

\section*{Plotting 1-D PDEs: matplot.1D}
> outtime <- seq(from \(=0\), to \(=50\), by \(=10\) )
> matplot.1D(out, which = "u", subset = time \%in\% outtime, grid = x,
\(+\quad x l a b=" x ", y l a b=" u ", ~ t y p e=" l ", ~ l w d=2, x l i m=c(-50,50), ~ c o l=" b l a c k ")\)


1-D PDEs

\section*{Plotting 1-D PDEs: image}
> image(out, which = "u", grid = x)


1-D PDEs

\section*{Plotting 1-D PDEs: persp plots}
```

> image(out, which = "u", grid = x, method = "persp", border = NA,
col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60)

```

\section*{Exercise: the Brusselator}

\section*{Problem formulation [6]}

The Brusselator is a model for an auto-catalytic chemical reaction between two products, \(A\) and \(B\), and producing also \(C\) and \(D\) in a number of intermediary steps.
\[
\begin{array}{lll}
A & \xrightarrow{k_{1}} & X_{1} \\
B+X_{1} & \xrightarrow{k_{2}} & X_{2}+C \\
2 X_{1}+X_{2} & \xrightarrow{k_{3}} & 3 X_{1} \\
X_{1} & \xrightarrow{k_{4}} & D
\end{array}
\]
where the \(k_{i}\) are the reaction rates.

\section*{Exercise: Implement the Brusselator in 1-D}

Equations for X1 and X2
\[
\begin{aligned}
& \frac{\partial X_{1}}{\partial t}=D_{X_{1}} \frac{\partial^{2} X_{1}}{\partial x^{2}}+1+X_{1}^{2} X_{2}-4 X_{1} \\
& \frac{\partial X_{2}}{\partial t}=D_{X_{2}} \frac{\partial^{2} X_{2}}{\partial x^{2}}+3 X_{1}-X_{1}^{2} X_{2}
\end{aligned}
\]

\section*{Tasks}
- The grid \(x\) extends from 0 to 1 , and consists of 50 cells.
- Initial conditions:
\[
X_{1}(0)=1+\sin (2 * \pi * x), X_{2}(0)=3
\]
- Generate output for \(t=0,1, \ldots 10\).
- Use file implementing the wave equation as a template: examples/wave.R.txt

\section*{2-D wave equation: Sine-Gordon}

\section*{Problem formulation}

The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial differential equation involving the sine of the dependent variable.
\[
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=D \frac{\partial^{2} u}{\partial x^{2}}+D \frac{\partial^{2} u}{\partial y^{2}}-\sin u \tag{5}
\end{equation*}
\]

Rewritten as two first order differential equations:
\[
\begin{align*}
& \frac{d u}{d t}=v \\
& \frac{\partial v}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+D \frac{\partial^{2} u}{\partial y^{2}}-\sin u \tag{6}
\end{align*}
\]

\section*{2-D Sine-Gordon in R}

\section*{grid:}
> Nx <- Ny <- 100
> xgrid <- setup.grid.1D(-7, 7, N = Nx); x <- xgrid\$x.mid
> ygrid <- setup.grid.1D(-7, 7, N = Ny); y <- ygrid\$x.mid
derivative function:
```

> sinegordon2D <- function(t, C, parms) {

+ u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
+ v <- matrix(nrow = Nx, ncol = Ny, data = C[(Nx*Ny+1) : (2*Nx*Ny)])
+ dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0, C.y.up = 0, C.y.down = 0,
+ D.x = 1, D.y = 1, dx = xgrid, dy = ygrid)\$dC - sin(u)
+ list(c(v, dv))
+ }

```

\section*{initial conditions:}
```

> peak <- function (x, y, x0, y0) return(exp(-((x-x0)^2 + (y-y0)^2)))
> uini <- outer(x, y, FUN = function(x, y) peak(x, y, 2,2) + peak(x, y,-2,-2)

+ +peak(x, y,-2,2) + peak(x, y, 2,-2))
> vini <- rep(O, Nx*Ny)

```

\section*{solution:}
```

> out <- ode.2D (y = c(uini,vini), times = 0:3, parms = 0, func = sinegordon2D,

+ names = c("u", "v"), dimens = c(Nx, Ny), method = "ode45")

```

\section*{Plotting 2-D PDEs: image plots}
> image(out, which = "u", grid = list(x, y), mfrow = c(2,2), ask = FALSE)


\section*{Plotting 2-D PDEs: persp plots}
> image(out, which = "u", grid = list(x, y), method = "persp", border = NA, col = "lightblue", box = FALSE, shade \(=0.5\), theta \(=0, p h i=60\), mfrow \(=c(2,2)\), ask \(=\) FALSE \()\)
\(\mathbf{u}\)
u

\(\mathbf{u}\)
u


\section*{Movie-like output of 2-D PDEs}
```

out <- ode.2D (y = c(uini, vini), times $=\operatorname{seq}(0,3$, by $=0.1)$,
parms $=$ NULL, func $=$ sinegordon2D,
names=c("u", "v"), dimens $=c(N x, N y)$,
method = "ode45")
image(out, which = "u", grid = list(x = x, y = y),
method = "persp", border = NA,
theta $=30$, phi $=60$, box $=$ FALSE, ask $=$ FALSE)

```

\section*{Exercise: Implement the Brusselator in 2-D}

\section*{Equations}
\[
\begin{aligned}
& \frac{\partial X_{1}}{\partial t}=D_{X_{1}} \frac{\partial^{2} X_{1}}{\partial x^{2}}+D_{X_{1}} \frac{\partial^{2} X_{1}}{\partial y^{2}}+1+X_{1}^{2} X_{2}-4 X_{1} \\
& \frac{\partial X_{2}}{\partial t}=D_{X_{2}} \frac{\partial^{2} X_{1}}{\partial x^{2}}+D_{X_{2}} \frac{\partial^{2} X_{1}}{\partial y^{2}}+3 X_{1}-X_{1}^{2} X_{2}
\end{aligned}
\]

Tasks
- The grids \(x\) and \(y\) extend from 0 to 1 , and consist of 50 cells.
- Parameter settings: diffusion coefficient:
\[
D_{X_{1}}=2 ; D_{X_{2}}=8 * D_{X_{1}}
\]
- Initial condition for \(X_{1}, X_{2}\) : random numbers inbetween 0 and 1 .
- Generate output for \(\mathrm{t}=0,1, \ldots 8\)
- Use the file implementing the Sine-Gordon equation as a template: examples/sinegordon.R.txt

\section*{Speeding up: Matrices and compiled code}

\section*{Methods for speeding up}
- Use matrices,
- Implement essential parts in compiled code (Fortran, C),
- Implement the full method in compiled code.

Formulating a model with matrices and vectors can lead to a considerable speed gain - and compact code - while retaining the full flexibility of R. The use of compiled code saves even more CPU time at the cost of a higher development effort.

\section*{Use of matrices}

\section*{A Lotka-Volterra model with 4 species}
```

> model <- function(t, n, parms) {

+ with(as.list(c(n, parms)), {
+ dn1 <- r1 * n1 - a13 * n1 * n3
+ dn2 <- r2 * n2 - a24 * n2 * n4
+ dn3 <- a13 * n1 * n3 - r3 * n3
+ dn4 <- a24 * n2 * n4 - r4 * n4
+ return(list(c(dn1, dn2, dn3, dn4)))
+ })
+ }
> parms <- c(r1 = 0.1, r2 = 0.1, r3 = 0.1, r4 = 0.1, a13 = 0.2, a24 = 0.1)
> times = seq(from = 0, to = 500, by = 0.1)
> n0 = c(n1 = 1, n2 = 1, n3 = 2, n4 = 2)

```
> system.time(out <- ode(n0, times, model, parms))
```

user system elapsed
3.02 0.00 3.02

```

Source: examples/lv-plain-or-matrix.R.txt

\section*{Use of matrices}

\section*{A Lotka-Volterra model with 4 species}
```

model <- function(t, n, parms) {

+ with(parms, {
+ dn <- r*n + n* (A %*% n)
+ return(list(c(dn)))
+ })
+ }
> parms <- list(
+ r=c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1),
+ A = matrix(c(0.0, 0.0, -0.2, 0.0, \# prey 1
+ 0.0, 0.0, 0.0, -0.1, \# prey 2
+ 0.2, 0.0, 0.0, 0.0, \# predator 1; eats prey 1
+ 0.0, 0.1, 0.0, 0.0), \# predator 2; eats prey 2
+ nrow = 4, ncol = 4, byrow = TRUE)
+)
> system.time(out <- ode(n0, times, model, parms))
user system elapsed
1.66 0.00 1.70

```

Source: examples/lv-plain-or-matrix.R.txt

\section*{Results}
- plot (out) will show the results.
- Note that the "plain" version has only 1 to 1 connections, but the matrix model is already full connected (with most connections are zero). The comparison is insofar unfair that the matrix version (despite faster execution) is more powerful.
- Exercise: Create a fully connected model in the plain version for a fair comparison.
- A parameter example (e.g. for weak coupling) can be found on: http:
//tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html

\section*{Using compiled code}

All solvers of deSolve
- allow direct communication between solvers and a compiled model.

See vignette ("compiledCode") [15]

\section*{Principle}
- Implement core model (and only this) in C or Fortran,
- Use data handling, storage and plotting facilities of R.
examples/compiled_lorenz/compiledcode.svg

\section*{The End}

Thank you!

More Info:
http://desolve.r-forge.r-project.org

\section*{Acknowledgments}

\section*{Citation}

A lot of effort went in creating this software; please cite it when using it.
- to cite deSolve: [20], rootSolve [19], ReacTran [16],
- Some complex examples can be found in [18],
- A framework to fit differential equation models to data is FME [17],
- A framework for ecological modelling is simecol [10].

\section*{Acknowledgments}
- None of this would be possible without the splendid work of the R Core Team [11],
- This presentation was created with Sweave [7],
- Creation of the packages made use of Rforge [21].

\section*{Bibliography I}
[1] K E Brenan, S L Campbell, and L R Petzold.
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations.
SIAM Classics in Applied Mathematics, 1996.
[2] P N Brown, G D Byrne, and A C Hindmarsh.
Vode, a variable-coefficient ode solver.
SIAM Journal on Scientific and Statistical Computing, 10:1038-1051, 1989.
[3] E Hairer, S. P. Norsett, and G Wanner.
Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition.
Springer-Verlag, Heidelberg, 2009.
[4] E Hairer and G Wanner.
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition.
Springer-Verlag, Heidelberg, 2010.
[5] A. C. Hindmarsh.
ODEPACK, a systematized collection of ODE solvers.
In R. Stepleman, editor, Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation, pages 55-64. IMACS / North-Holland, Amsterdam, 1983.
[6] R. Lefever, G. Nicolis, and I. Prigogine.
On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium. Journal of Chemical Physics, 47:1045-1047, 1967.
[7] Friedrich Leisch.
Dynamic generation of statistical reports using literate data analysis.
In W. Härdle and B. Rönz, editors, COMPSTAT 2002 - Proceedings in Computational Statistics, pages 575-580, Heidelberg, 2002.
Physica-Verlag.
[8] M. C. Mackey and L. Glass.
Oscillation and chaos in physiological control systems.
Science, 197:287-289, 1977.

\section*{Bibliography II}
[9] Linda R. Petzold.
Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4:136-148, 1983.
[10] Thomas Petzoldt and Karsten Rinke.
simecol: An object-oriented framework for ecological modeling in R.
Journal of Statistical Software, 22(9):1-31, 2007.
[11] R Development Core Team.
R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.
[12] O.E. Rossler.
An equation for continous chaos.
Physics Letters A, 57 (5):397-398, 1976.
[13] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB.
Cambridge University Press, Cambridge, 2003.
[14] L.F Shampine and S. Thompson.
Solving ddes in matlab.
App. Numer. Math., 37:441-458, 2001.
[15] K Soetaert, T Petzoldt, and RW Setzer.
\(R\)-package deSolve, Writing Code in Compiled Languages, 2009.
package vignette.
[16] Karline Soetaert and Filip Meysman.
Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R .
Environmental modelling and software, page in press, 2011.

Finally

\section*{Bibliography III}
[17] Karline Soetaert and Thomas Petzoldt.
Inverse modelling, sensitivity and monte carlo analysis in R using package FME . Journal of Statistical Software, 33(3):1-28, 2010.
[18] Karline Soetaert and Thomas Petzoldt.
Solving ODEs, DAEs, DDEs and PDEs in R.
Journal of Numerical Analysis, Industrial and Applied Mathematics, in press, 2011.
[19] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Solving Differential Equations in R .
The \(R\) Journal, 2(2):5-15, December 2010.
[20] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33(9):1-25, 2010.
[21] Stefan Theußl and Achim Zeileis. Collaborative Software Development Using R-Forge. The \(R\) Journal, 1(1):9-14, May 2009.
[22] B. van der Pol and J. van der Mark.
Frequency demultiplication.
Nature, 120:363-364, 1927.```

