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Installing

Installing the R Software and packages
Downloading R from the R-project website: http://www.r-project.org

Packages can be installed from within the R-software:

or via commandline

install.packages("deSolve", dependencies = TRUE)

http://www.r-project.org
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Installing

Installing a suitable editor
Tinn-R is suitable (if you are a Windows adept)

Rstudio is very promising

http://sciviews.org/Tinn-R/
http://rstudio.org/
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Installing

Necessary packages

Several packages deal with differential equations

I deSolve: main integration package

I rootSolve: steady-state solver

I bvpSolve: boundary value problem solvers

I ReacTran: partial differential equations

I simecol: interactive environment for implementing models

All packages have at least one author in common
→ **Consistency** in interface



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

Getting help

Getting help

I ?deSolve opens the main help file
I Index at bottom of this page opens an index page

I One main manual (or “vignette”):
I vignette("deSolve")
I vignette("rootSolve")
I vignette("bvpSolve")
I vignette("ReacTran")
I vignette("simecol-introduction")

I Several dedicated vignettes:
I vignette("compiledCode")
I vignette("bvpTests")
I vignette("PDE")
I vignette("simecol-Howto")
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One equation

Model specification

Let’s begin . . .
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One equation

Logistic growth

Differential equation

dN

dt
= r · N ·

(
1− N

K

)

Analytical solution

Nt =
KN0ert

K + N0 (ert − 1)

R implementation

> logistic <- function(t, r, K, N0) {
+ K * N0 * exp(r * t) / (K + N0 * (exp(r * t) - 1))
+ }
> plot(0:100, logistic(t = 0:100, r = 0.1, K = 10, N0 = 0.1))
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One equation

Numerical simulation in R

Why numerical solutions?

I Not all systems have an analytical solution,

I Numerical solutions allow discrete forcings, events, ...

Why R?

I If standard tool for statistics, why x$$$ for dynamic simulations?

I Other reasons will show up at this conference (useR!2011).



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

One equation

Numerical solution of the logistic equation

library(deSolve)

model <- function (time, y, parms) {

with(as.list(c(y, parms)), {

dN <- r * N * (1 - N / K)

list(dN)

})

}

y      <- c(N = 0.1)

parms <- c(r = 0.1, K = 10)

times <- seq(0, 100, 1)

out <- ode(y, times, model, parms)

plot(out)

Numerical methods provided by the

deSolve package

http://desolve.r-forge.r-project.org

Differential equation

„similar to formula on paper"
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One equation

Inspecting output

I Print to screen
> head(out, n = 4)

time N
[1,] 0 0.1000000
[2,] 1 0.1104022
[3,] 2 0.1218708
[4,] 3 0.1345160

I Summary
> summary(out)

N
Min. 0.100000
1st Qu. 1.096000
Median 5.999000
Mean 5.396000
3rd Qu. 9.481000
Max. 9.955000
N 101.000000
sd 3.902511
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One equation

Inspecting output -ctd

I Plotting
> plot(out, main = "logistic growth", lwd = 2)
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One equation

Inspecting output -ctd
I Diagnostic features of simulation

> diagnostics(out)

--------------------
lsoda return code
--------------------

return code (idid) = 2
Integration was successful.

--------------------
INTEGER values
--------------------

1 The return code : 2
2 The number of steps taken for the problem so far: 105
3 The number of function evaluations for the problem so far: 211
5 The method order last used (successfully): 5
6 The order of the method to be attempted on the next step: 5
7 If return flag =-4,-5: the largest component in error vector 0
8 The length of the real work array actually required: 36
9 The length of the integer work array actually required: 21
14 The number of Jacobian evaluations and LU decompositions so far: 0
15 The method indicator for the last succesful step,

1=adams (nonstiff), 2= bdf (stiff): 1
16 The current method indicator to be attempted on the next step,

1=adams (nonstiff), 2= bdf (stiff): 1

--------------------
RSTATE values
--------------------

1 The step size in t last used (successfully): 1
2 The step size to be attempted on the next step: 1
3 The current value of the independent variable which the solver has reached: 100.8645
4 Tolerance scale factor > 1.0 computed when requesting too much accuracy: 0
5 The value of t at the time of the last method switch, if any: 0
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Coupled equations

Coupled ODEs: the rigidODE problem

Problem [3]

I Euler equations of a rigid body without external forces.

I Three dependent variables (y1, y2, y3), the coordinates of the
rotation vector,

I I1, I2, I3 are the principal moments of inertia.
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Coupled equations

Coupled ODEs: the rigidODE equations

Differential equation

y ′1 = (I2 − I3)/I1 · y2y3

y ′2 = (I3 − I1)/I2 · y1y3

y ′3 = (I1 − I2)/I3 · y1y2

Parameters

I1 = 0.5, I2 = 2, I3 = 3

Initial conditions

y1(0) = 1, y2(0) = 0, y3(0) = 0.9
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Coupled equations

Coupled ODEs: the rigidODE problem

R implementation

> library(deSolve)
> rigidode <- function(t, y, parms) {
+ dy1 <- -2 * y[2] * y[3]
+ dy2 <- 1.25* y[1] * y[3]
+ dy3 <- -0.5* y[1] * y[2]
+ list(c(dy1, dy2, dy3))
+ }
> yini <- c(y1 = 1, y2 = 0, y3 = 0.9)
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode (times = times, y = yini, func = rigidode, parms = NULL)

> head (out, n = 3)

time y1 y2 y3
[1,] 0.00 1.0000000 0.00000000 0.9000000
[2,] 0.01 0.9998988 0.01124925 0.8999719
[3,] 0.02 0.9995951 0.02249553 0.8998875
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Coupled equations

Coupled ODEs: plotting the rigidODE problem
> plot(out)
> library(scatterplot3d)
> par(mar = c(0, 0, 0, 0))
> scatterplot3d(out[,-1], xlab = "", ylab = "", zlab = "", label.tick.marks = FALSE)
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Exercise

Exercise: the Rossler equations

Differential equation [12]

y ′1 = −y2 − y3

y ′2 = y1 + a · y2

y ′3 = b + y3 · (y1 − c)

Parameters

a = 0.2, b = 0.2, c = 5

Initial Conditions

y1 = 1, y2 = 1, y3 = 1
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Exercise

Exercise: the Rossler equations - ctd

Tasks:

I Solve the ODEs on the interval [0, 100]

I Produce a 3-D phase-plane plot

I Use file examples/rigidODE.R.txt as a template

examples/rigidODE.R.txt
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Solvers ...

Solver overview, stiffness, accuracy
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Solvers

Integration methods: package deSolve [20]

Euler

Runge−Kutta Linear Multistep

Explicit RK Adams Implicit RK BDF

non−stiff problems stiff problems
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Solvers

Solver overview: package deSolve

Function Description

lsoda [9] IVP ODEs, full or banded Jacobian, automatic choice for
stiff or non-stiff method

lsodar [9] same as lsoda; includes a root-solving procedure.

lsode [5],
vode [2]

IVP ODEs, full or banded Jacobian, user specifies if stiff
(bdf) or non-stiff (adams)

lsodes [5] IVP ODEs; arbitrary sparse Jacobian, stiff

rk4, rk,

euler

IVP ODEs; Runge-Kutta and Euler methods

radau [4] IVP ODEs+DAEs; implicit Runge-Kutta method

daspk [1] IVP ODEs+DAEs; bdf and adams method

zvode IVP ODEs, like vode but for complex variables

adapted from [19].
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Solvers

Solver overview: package deSolve

Solver Notes st
iff

y’
=
f(
t,y
)

M
y’
=
f(
t,y
)

F
(y
’,t
,y
)=
0

R
oo
ts

E
ve
nt
s

La
gs
 (
D
D
E
)

N
es
tin
g

lsoda/lsodar automatic method 

selection
auto x x x x

lsode bdf, adams, … user defined x x x x

lsodes sparse Jacobian yes x x x x

vode bdf, adams, … user defined x x x

zvode complex numbers user defined x x x

daspk DAE solver yes x x x x x

radau DAE; implicit RK yes x x x x x

rk, rk4, euler euler, ode23, ode45, … 

rkMethod
no x x x

iteration returns state at t+dt no x x x

 - ode, ode.band, ode.1D, ode.2D, ode.3D: top level functions (wrappers)

 - red: functionality added by us

adapted
from [18]
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Solvers

Options of solver functions

Top level function

> ode(y, times, func, parms,
+ method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
+ "euler", "rk4", "ode23", "ode45", "radau",
+ "bdf", "bdf_d", "adams", "impAdams", "impAdams_d",
+ "iteration"), ...)

Workhorse function: the individual solver
> lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
+ jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
+ verbose = FALSE, nroot = 0, tcrit = NULL,
+ hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
+ maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
+ maxsteps = 5000, dllname = NULL, initfunc = dllname,
+ initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
+ outnames = NULL, forcings = NULL, initforc = NULL,
+ fcontrol = NULL, events = NULL, lags = NULL,...)
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Solvers

Arghhh, which solver and which options???

Problem type?

I ODE: use ode,

I DDE: use dede,

I DAE: daspk or radau,

I PDE: ode.1D, ode.2D, ode.3D,

. . . others for specific purposes, e.g. root finding, difference equations (euler,

iteration) or just to have a comprehensive solver suite (rk4, ode45).

Stiffness

I default solver lsoda selects method automatically,

I adams or bdf may speed up a little bit if degree of stiffness is known,

I vode or radau may help in difficult situations.
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Stiffness

Solvers for stiff systems

Stiffness

I Difficult to give a precise definition.

≈ system where some components change more rapidly than others.

Sometimes difficult to solve:

I solution can be numerically unstable,

I may require very small time steps (slow!),

I deSolve contains solvers that are suitable for stiff systems,

But: “stiff solvers” slightly less efficient for “well behaving” systems.

I Good news: lsoda selects automatically between stiff solver (bdf)
and nonstiff method (adams).



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

Stiffness

Van der Pol equation

Oscillating behavior of electrical circuits containing tubes [22].

2nd order ODE

y ′′ − µ(1− y 2)y ′ + y = 0

. . . must be transformed into two 1st order equations

y ′1 = y2

y ′2 = µ · (1− y1
2) · y2 − y1

I Initial values for state variables at t = 0: y1(t=0)
= 2, y2(t=0)

= 0

I One parameter: µ = large → stiff system; µ = small → non-stiff.
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Stiffness

Model implementation

> library(deSolve)
> vdpol <- function (t, y, mu) {
+ list(c(
+ y[2],
+ mu * (1 - y[1]^2) * y[2] - y[1]
+ ))
+ }

> yini <- c(y1 = 2, y2 = 0)

> stiff <- ode(y = yini, func = vdpol, times = 0:3000, parms = 1000)
> nonstiff <- ode(y = yini, func = vdpol, times = seq(0, 30, 0.01), parms = 1)

> head(stiff, n = 5)

time y1 y2
[1,] 0 2.000000 0.0000000000
[2,] 1 1.999333 -0.0006670373
[3,] 2 1.998666 -0.0006674088
[4,] 3 1.997998 -0.0006677807
[5,] 4 1.997330 -0.0006681535
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Stiffness

Interactive exercise

I The following link opens in a web browser. It requires a recent
version of Firefox, Internet Explorer or Chrome, ideal is Firefox 5.0 in
full-screen mode. Use Cursor keys for slide transition:

I Left cursor guides you through the full presentation.

I Mouse and mouse wheel for full-screen panning and zoom.

I Pos1 brings you back to the first slide.

I examples/vanderpol.svg

I The following opens the code as text file for life demonstrations in R
I examples/vanderpol.R.txt

examples/vanderpol.svg
examples/vanderpol.R.txt
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Stiffness

Plotting

Stiff solution

> plot(stiff, type = "l", which = "y1",
+ lwd = 2, ylab = "y",
+ main = "IVP ODE, stiff")

Nonstiff solution
> plot(nonstiff, type = "l", which = "y1",
+ lwd = 2, ylab = "y",
+ main = "IVP ODE, nonstiff")



Default solver, lsoda:
> system.time(
+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000)
+ )

user system elapsed
0.59 0.00 0.61

> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1)
+ )

user system elapsed
0.67 0.00 0.69

Implicit solver, bdf:

> system.time(
+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000, method = "bdf")
+ )

user system elapsed
0.55 0.00 0.60

> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1, method = "bdf")
+ )

user system elapsed
0.36 0.00 0.36

⇒ Now use other solvers, e.g. adams, ode45, radau.
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Stiffness

Results

Timing results; your computer may be faster:

solver non-stiff stiff
ode23 0.37 271.19
lsoda 0.26 0.23
adams 0.13 616.13
bdf 0.15 0.22
radau 0.53 0.72

Comparison of solvers for a stiff and a non-stiff parametrisation of the
van der Pol equation (time in seconds, mean values of ten simulations on
an AMD AM2 X2 3000 CPU).
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Accuracy

Accuracy and stability

I Options atol and rtol specify accuracy,

I Stability can be influenced by specifying hmax and maxsteps.
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Accuracy

Accuracy and stability - ctd

atol (default 10−6) defines absolute threshold,

I select appropriate value, depending of the size of your
state variables,

I may be between ≈ 10−300 (or even zero) and ≈ 10300.

rtol (default 10−6) defines relative threshold,

I It makes no sense to specify values < 10−15 because
of the limited numerical resolution of double precision
arithmetics (≈ 16 digits).

hmax is automatically set to the largest difference in times, to
avoid that the simulation possibly ignores short-term
events. Sometimes, it may be set to a smaller value to
improve robustness of a simulation.

hmin should normally not be changed.

Example: Setting rtol and atol: examples/PCmod_atol_0.R.txt

examples/PCmod_atol_0.R.txt
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Plotting, scenario comparison, observations
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Overview

Plotting and printing
Methods for plotting and extracting data in deSolve

I subset extracts specific variables that meet certain constraints.

I plot, hist create one plot per variable, in a number of panels

I image for plotting 1-D, 2-D models

I plot.1D and matplot.1D for plotting 1-D outputs

I ?plot.deSolve opens the main help file

rootSolve has similar functions

I subset extracts specific variables that meet certain constraints.

I plot for 1-D model outputs, image for plotting 2-D, 3-D model
outputs

I ?plot.steady1D opens the main help file
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Example: Chaos

Chaos

The Lorenz equations

I chaotic dynamic system of ordinary differential equations

I three variables, X , Y and Z represent idealized behavior of the
earth’s atmosphere.

> chaos <- function(t, state, parameters) {
+ with(as.list(c(state)), {
+
+ dx <- -8/3 * x + y * z
+ dy <- -10 * (y - z)
+ dz <- -x * y + 28 * y - z
+
+ list(c(dx, dy, dz))
+ })
+ }
> yini <- c(x = 1, y = 1, z = 1)
> yini2 <- yini + c(1e-6, 0, 0)
> times <- seq(0, 100, 0.01)
> out <- ode(y = yini, times = times, func = chaos, parms = 0)
> out2 <- ode(y = yini2, times = times, func = chaos, parms = 0)
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Example: Chaos

Plotting multiple scenarios
I The default for plotting one or more objects is to draw a line plot
I We can plot as many objects of class deSolve as we want.
I By default different outputs get different colors and line types

> plot(out, out2, xlim = c(0, 30), lwd = 2, lty = 1)
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Example: Chaos

Changing the panel arrangement

Default
The number of panels per page is automatically determined up to 3 x 3
(par(mfrow = c(3, 3))).

Use mfrow() or mfcol() to overrule

> plot(out, out2, xlim = c(0,30), lwd = 2, lty = 1, mfrow = c(1, 3))

Important:
upon returning the default mfrow is **NOT** restored
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Example: Chaos

Changing the defaults

I We can change the defaults of the dataseries, (col, lty, etc.)
I will be effective for all figures

I We can change the default of each figure, (title, labels, etc.)
I vector input can be specified by a list; NULL will select the default

> plot(out, out2, col = c("blue", "orange"), main = c("Xvalue", "Yvalue", "Zvalue"),
+ xlim = list(c(20, 30), c(25, 30), NULL), mfrow = c(1, 3))
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Example: Chaos

R’s default plot
I If we select x and y-values, R’s default plot will be used

> plot(out[,"x"], out[,"y"], pch = ".", main = "Lorenz butterfly",
+ xlab = "x", ylab = "y")
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Example: Chaos

R’s default plot
I Use subset to select values that meet certain conditions:

> XY <- subset(out, select = c("x", "y"), subset = y < 10 & x < 40)
> plot(XY, main = "Lorenz butterfly", xlab = "x", ylab = "y", pch = ".")
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Multiple scenarios

Plotting multiple scenarios
Simple if number of outputs is known

> derivs <- function(t, y, parms)
+ with (as.list(parms), list(r * y * (1-y/K)))
> parms <- c(r = 1, K = 10)
> yini <- c(y = 2)
> yini2 <- c(y = 12)
> times <- seq(from = 0, to = 30, by = 0.1)
> out <- ode(y = yini, parms = parms, func = derivs, times = times)
> out2 <- ode(y = yini2, parms = parms, func = derivs, times = times)
> plot(out, out2, lwd = 2)
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Multiple scenarios

Plotting multiple scenarios
Use a list if many or unknown number of outputs

> outlist <- list()
> plist <- cbind(r = runif(30, min = 0.1, max = 5),
+ K = runif(30, min = 8, max = 15))
> for (i in 1:nrow(plist))
+ outlist[[i]] <- ode(y = yini, parms = plist[i,], func = derivs, times = times)
> plot(out, outlist)
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Multiple scenarios

Observed data

Arguments obs and obspar are used to add observed data

> obs2 <- data.frame(time = c(1, 5, 10, 20, 25), y = c(12, 10, 8, 9, 10))
> plot(out, out2, obs = obs2, obspar = list(col = "red", pch = 18, cex = 2))
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Multiple scenarios

Observed data
A list of observed data is allowed
> obs2 <- data.frame(time = c(1, 5, 10, 20, 25), y = c(12, 10, 8, 9, 10))
> obs1 <- data.frame(time = c(1, 5, 10, 20, 25), y = c(1, 6, 8, 9, 10))
> plot(out, out2, col = c("blue", "red"), lwd = 2,
+ obs = list(obs1, obs2),
+ obspar = list(col = c("blue", "red"), pch = 18, cex = 2))
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Under control: Forcing functions and events
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Discontinuities in dynamic models

Most solvers assume that dynamics is smooth
However, there can be several types of discontinuities:

I Non-smooth external variables

I Discontinuities in the derivatives

I Discontinuites in the values of the state variables

A solver does not have large problems with first two types of
discontinuities, but changing the values of state variables is much more
difficult.
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External Variables

External variables in dynamic models

. . . also called forcing functions

Why external variables?

I Some important phenomena are not explicitly included in a
differential equation model, but imposed as a time series. (e.g.
sunlight, important for plant growth is never “modeled”).

I Somehow, during the integration, the model needs to know the
value of the external variable at each time step!
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External Variables

External variables in dynamic models

Implementation in R

I R has an ingenious function that is especially suited for this task:
function approxfun

I It is used in two steps:
I First an interpolating function is constructed, that contains the data.

This is done before solving the differential equation.

afun <- approxfun(data)

I Within the derivative function, this interpolating function is called to
provide the interpolated value at the requested time point (t):

tvalue <- afun(t)

?forcings will open a help file
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External Variables

Example: Predator-Prey model with time-varying input

This example is from [15]

Create an artificial time-series
> times <- seq(0, 100, by = 0.1)
> signal <- as.data.frame(list(times = times, import = rep(0, length(times))))
> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)

> signal[8:12,]

times import
8 0.7 0
9 0.8 0
10 0.9 0
11 1.0 1
12 1.1 1

Create the interpolating function, using approxfun

> input <- approxfun(signal, rule = 2)

> input(seq(from = 0.98, to = 1.01, by = 0.005))

[1] 0.80 0.85 0.90 0.95 1.00 1.00 1.00
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External Variables

A Predator-Prey model with time-varying input

Use interpolation function in ODE function

> SPCmod <- function(t, x, parms) {
+ with(as.list(c(parms, x)), {
+
+ import <- input(t)
+
+ dS <- import - b * S * P + g * C
+ dP <- c * S * P - d * C * P
+ dC <- e * P * C - f * C
+ res <- c(dS, dP, dC)
+ list(res, signal = import)
+ })
+ }

> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0)
> xstart <- c(S = 1, P = 1, C = 1)
> out <- ode(y = xstart, times = times, func = SPCmod, parms)
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External Variables

Plotting model output

> plot(out)
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Events

Discontinuities in dynamic models: Events

What?

I An event is when the values of state variables change abruptly.

Events in Most Programming Environments

I When an event occurs, the simulation needs to be restarted.

I Use of loops etc. . . .

I Cumbersome, messy code

Events in R

I Events are part of a model; no restart necessary

I Separate dynamics inbetween events from events themselves

I Very neat and efficient!
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Events

Discontinuities in dynamic models, Events

Two different types of events in R

I Events occur at known times
I Simple changes can be specified in a data.frame with:

I name of state variable that is affected
I the time of the event
I the magnitude of the event
I event method (“replace”, “add”, “multiply”)

I More complex events can be specified in an event function that
returns the changed values of the state variables
function(t, y, parms, ...).

I Events occur when certain conditions are met
I Event is triggered by a root function
I Event is specified in an event function

?events will open a help file
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Events

A patient injects drugs in the blood

Problem Formulation

I Describe the concentration of the drug in the blood

I Drug injection occurs at known times → data.frame

Dynamics inbetween events

I The drug decays with rate b

I Initially the drug concentration = 0:

> pharmaco <- function(t, blood, p) {
+ dblood <- - b * blood
+ list(dblood)
+ }

> b <- 0.6
> yini <- c(blood = 0)
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Events

A patient injects drugs in the blood

Specifying the event

I Daily doses, at same time of day

I Injection makes the concentration in the blood increase by 40 units.

I The drug injections are specified in a special event data.frame

> injectevents <- data.frame(var = "blood",
+ time = 0:20,
+ value = 40,
+ method = "add")

> head(injectevents)

var time value method
1 blood 0 40 add
2 blood 1 40 add
3 blood 2 40 add
4 blood 3 40 add
5 blood 4 40 add
6 blood 5 40 add
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Events

A patient injects drugs in the blood

Solve model

I Pass events to the solver in a list

I All solvers in deSolve can handle events

I Here we use the “implicit Adams” method

> times <- seq(from = 0, to = 10, by = 1/24)
> outDrug <- ode(func = pharmaco, times = times, y = yini,
+ parms = NULL, method = "impAdams",
+ events = list(data = injectevents))
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Events

plotting model output

> plot(outDrug)
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Events

An event triggered by a root: A Bouncing Ball

Problem formulation [13]

I A ball is thrown vertically from the ground (y(0) = 0)

I Initial velocity (y’) = 10 m s−1; acceleration g = 9.8 m s−2

I When ball hits the ground, it bounces.

ODEs describe height of the ball above the ground (y)

Specified as 2nd order ODE

y ′′ = −g
y(0) = 0
y ′(0) = 10

Specified as 1st order ODE

y ′1 = y2

y ′2 = −g
y1(0) = 0
y2(0) = 10
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Events

A Bouncing Ball

Dynamics inbetween events

> library(deSolve)

> ball <- function(t, y, parms) {
+ dy1 <- y[2]
+ dy2 <- -9.8
+
+ list(c(dy1, dy2))
+ }

> yini <- c(height = 0, velocity = 10)
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Events

The Ball Hits the Ground and Bounces

Root: the Ball hits the ground

I The ground is where height = 0

I Root function is 0 when y1 = 0

> rootfunc <- function(t, y, parms) return (y[1])

Event: the Ball bounces

I The velocity changes sign (-) and is reduced by 10%

I Event function returns changed values of both state variables

> eventfunc <- function(t, y, parms) {
+ y[1] <- 0
+ y[2] <- -0.9*y[2]
+ return(y)
+ }
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Events

An event triggered by a root: the bouncing ball

Solve model

I Inform solver that event is triggered by root (root = TRUE)

I Pass event function to solver

I Pass root function to solver

> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode(times = times, y = yini, func = ball,
+ parms = NULL, rootfun = rootfunc,
+ events = list(func = eventfunc, root = TRUE))

Get information about the root
> attributes(out)$troot

[1] 2.040816 3.877551 5.530612 7.018367 8.357347 9.562428 10.647001 11.623117
[9] 12.501621 13.292274 14.003862 14.644290 15.220675 15.739420 16.206290 16.626472
[17] 17.004635 17.344981 17.651291 17.926970 18.175080 18.398378 18.599345 18.780215
[25] 18.942998 19.089501 19.221353 19.340019 19.446817 19.542935 19.629441 19.707294
[33] 19.777362 19.840421 19.897174 19.948250 19.994217
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Events

An event triggered by a root: the bouncing ball

> plot(out, select = "height")
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Events

An event triggered by a root: the bouncing ball
Create Movie-like output

for (i in seq(1, 2001, 10)) {

plot(out, which = "height", type = "l", lwd = 1,

main = "", xlab = "Time", ylab = "Height"

)

points(t(out[i,1:2]), pch = 21, lwd = 1, col = 1, cex = 2,

bg = rainbow(30, v = 0.6)[20-abs(out[i,3])+1])

Sys.sleep(0.01)

}


bball.wmv
Media File (video/x-ms-wmv)
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Events

Exercise: Add events to a logistic equation

Problem formulation, ODE
The logistic equation describes the growth of a population:

y ′ = r · y · (1− y

K
)

r = 1,K = 10, y0 = 2

Events
This population is being harvested according to several strategies:

I There is no harvesting

I Every 2 days the population’s density is reduced to 50%

I When the species has reached 80% of its carrying capacity, its
density is halved.
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Events

Exercise: Add events to a logistic equation - ctd

Tasks:

I Run the model for 20 days

I Implement first strategy in a data.frame

I Second strategy requires root and event function

I Use file examples/logisticEvent.R.txt as a template

examples/logisticEvent.R.txt
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Delay Differential Equations

What?
Delay Differential Equations are similar to ODEs except that they involve
past values of variables and/or derivatives.

DDEs in R: R-package deSolve

I dede solves DDEs

I lagvalue provides lagged values of the state variables

I lagderiv provides lagged values of the derivatives
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Example: Chaotic Production of White Blood Cells

Mackey-Glass Equation [8]:

I y : current density of white blood cells,

I yτ is the density τ time-units in the past,

I first term equation is production rate

I b is destruction rate

y ′ = ayτ
1

1+y c
τ
− by

yτ = y(t − τ)
yt = 0.5 for t ≤ 0

(1)

I For τ = 10 the output is periodic,

I For τ = 20 cell densities display a chaotic pattern
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Solution in R

> library(deSolve)
> retarded <- function(t, y, parms, tau) {
+ tlag <- t - tau
+ if (tlag <= 0)
+ ylag <- 0.5
+ else
+ ylag <- lagvalue(tlag)
+
+ dy <- 0.2 * ylag * 1/(1+ylag^10) - 0.1 * y
+ list(dy = dy, ylag = ylag)
+ }
> yinit <- 0.5
> times <- seq(from = 0, to = 300, by = 0.1)
> yout1 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 10)
> yout2 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 20)
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Solution in R
> plot(yout1, lwd = 2, main = "tau=10", ylab = "y", mfrow = c(2, 2), which = 1)
> plot(yout1[,-1], type = "l", lwd = 2, xlab = "y")
> plot(yout2, lwd = 2, main = "tau=20", ylab = "y", mfrow = NULL, which = 1)
> plot(yout2[,-1], type = "l", lwd = 2, xlab = "y")
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Exercise: the Lemming model

A nice variant of the logistic model is the DDE lemming model [14]:

y ′ = r · y(1− y(t − τ)

K
) (2)

Use file examples/ddelemming.R.txt as a template to implement this
model

I initial condition y(t = 0) = 19.001

I parameter values r = 3.5, τ = 0.74, K = 19

I history y(t) = 19 for t < 0

I Generate output for t in [0, 40].

examples/ddelemming.R.txt
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Diffusion, advection and reaction:
Partial differential equations (PDE) with ReacTran
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Partial Differential Equations

PDEs as advection-diffusion problems
Many second-order PDEs can be written as advection-diffusion problems:

∂C

∂t
= −v

∂C

∂x
+ D

∂2C

∂x2
+ f (t, x ,C )

same for 2-D and 3-D

Example: wave equation in 1-D

∂2u

∂t2
= c2 ∂

2u

∂x2
(3)

can be written as:
du

dt
= v

∂v

∂t
= c2 ∂

2u

∂x2

(4)
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Three packages for solving PDEs in R

ReacTran: methods for numerical approximation of PDEs [16]

I tran.1D(C, C.up, C.down, D, v, ...)

I tran.2D, tran.3D

deSolve: special solvers for time-varying cases [20]

I ode.1D(y, times, func, parms, nspec, dimens, method, names, ...)

I ode.2D, ode.3D

rootSolve: special solvers for time-invariant cases [19]

I steady.1D(y, time, func, parms, nspec, dimens, method, names, ...)

I steady.2D, steady.3D
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1-D PDEs

Numerical solution of the wave equation

library(ReacTran)

wave <- function (t, y, parms) {

u <- y[1:N]

v <- y[(N+1):(2*N)]

du <- v

dv <- tran.1D(C = u, C.up = 0, C.down = 0, D = 1, 

dx = xgrid)$dC

list(c(du, dv))

}

xgrid <- setup.grid.1D(-100, 100, dx.1 = 0.2)

x     <- xgrid$x.mid

N     <- xgrid$N

uini <- exp(-0.2*x^2)

vini <- rep(0, N)

yini <- c(uini, vini)

times <- seq (from = 0, to = 50, by = 1)

out <- ode.1D(yini, times, wave, parms, method = "adams", 

names = c("u", "v"), dimens = N)

image(out, grid = x)

Numerical method provided by the

deSolve package

http://desolve.r-forge.r-project.org

Methods from ReacTran
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1-D PDEs

Plotting 1-D PDEs: matplot.1D
> outtime <- seq(from = 0, to = 50, by = 10)
> matplot.1D(out, which = "u", subset = time %in% outtime, grid = x,
+ xlab = "x", ylab = "u", type = "l", lwd = 2, xlim = c(-50, 50), col="black")
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1-D PDEs

Plotting 1-D PDEs: image

> image(out, which = "u", grid = x)



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

1-D PDEs

Plotting 1-D PDEs: persp plots
> image(out, which = "u", grid = x, method = "persp", border = NA,
+ col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60)
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1-D PDEs

Exercise: the Brusselator

Problem formulation [6]
The Brusselator is a model for an auto-catalytic chemical reaction
between two products, A and B, and producing also C and D in a
number of intermediary steps.

A
k1−→ X1

B + X1
k2−→ X2 + C

2X1 + X2
k3−→ 3X1

X1
k4−→ D

where the ki are the reaction rates.
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1-D PDEs

Exercise: Implement the Brusselator in 1-D

Equations for X1 and X2

∂X1

∂t = DX1

∂2X1

∂x2 + 1 + X 2
1 X2 − 4X1

∂X2

∂t = DX2

∂2X2

∂x2 + 3X1 − X 2
1 X2

Tasks

I The grid x extends from 0 to 1, and consists of 50 cells.

I Initial conditions:

X1(0) = 1 + sin(2 ∗ π ∗ x),X2(0) = 3

I Generate output for t = 0, 1, . . . 10.

I Use file implementing the wave equation as a template:
examples/wave.R.txt

examples/wave.R.txt
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2-D PDEs

2-D wave equation: Sine-Gordon

Problem formulation
The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial
differential equation involving the sine of the dependent variable.

∂2u

∂t2
= D

∂2u

∂x2
+ D

∂2u

∂y 2
− sin u (5)

Rewritten as two first order differential equations:

du
dt = v
∂v
∂t = D ∂2u

∂x2 + D ∂2u
∂y2 − sin u

(6)
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2-D PDEs

2-D Sine-Gordon in R

grid:
> Nx <- Ny <- 100
> xgrid <- setup.grid.1D(-7, 7, N = Nx); x <- xgrid$x.mid
> ygrid <- setup.grid.1D(-7, 7, N = Ny); y <- ygrid$x.mid

derivative function:
> sinegordon2D <- function(t, C, parms) {
+ u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
+ v <- matrix(nrow = Nx, ncol = Ny, data = C[(Nx*Ny+1) : (2*Nx*Ny)])
+ dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0, C.y.up = 0, C.y.down = 0,
+ D.x = 1, D.y = 1, dx = xgrid, dy = ygrid)$dC - sin(u)
+ list(c(v, dv))
+ }

initial conditions:
> peak <- function (x, y, x0, y0) return(exp(-( (x-x0)^2 + (y-y0)^2)))
> uini <- outer(x, y, FUN = function(x, y) peak(x, y, 2,2) + peak(x, y,-2,-2)
+ + peak(x, y,-2,2) + peak(x, y, 2,-2))
> vini <- rep(0, Nx*Ny)

solution:
> out <- ode.2D (y = c(uini,vini), times = 0:3, parms = 0, func = sinegordon2D,
+ names = c("u", "v"), dimens = c(Nx, Ny), method = "ode45")
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2-D PDEs

Plotting 2-D PDEs: image plots

> image(out, which = "u", grid = list(x, y), mfrow = c(2,2), ask = FALSE)



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

2-D PDEs

Plotting 2-D PDEs: persp plots
> image(out, which = "u", grid = list(x, y), method = "persp", border = NA,
+ col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60,
+ mfrow = c(2,2), ask = FALSE)
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2-D PDEs

Movie-like output of 2-D PDEs

out <- ode.2D (y = c(uini, vini), times = seq(0, 3, by = 0.1),

parms = NULL, func = sinegordon2D,

names=c("u", "v"), dimens = c(Nx, Ny),

method = "ode45")

image(out, which = "u", grid = list(x = x, y = y),

method = "persp", border = NA,

theta = 30, phi = 60, box = FALSE, ask = FALSE)
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2-D PDEs

Exercise: Implement the Brusselator in 2-D
Equations

∂X1

∂t = DX1

∂2X1

∂x2 + DX1

∂2X1

∂y2 + 1 + X 2
1 X2 − 4X1

∂X2

∂t = DX2

∂2X1

∂x2 + DX2

∂2X1

∂y2 + 3X1 − X 2
1 X2

Tasks

I The grids x and y extend from 0 to 1, and consist of 50 cells.

I Parameter settings: diffusion coefficient:

DX1 = 2; DX2 = 8 ∗ DX1

I Initial condition for X1, X2: random numbers inbetween 0 and 1.

I Generate output for t = 0, 1, . . . 8

I Use the file implementing the Sine-Gordon equation as a template:
examples/sinegordon.R.txt

examples/sinegordon.R.txt
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Speeding up: Matrices and compiled code
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Methods for speeding up

I Use matrices,

I Implement essential parts in compiled code (Fortran, C),

I Implement the full method in compiled code.

Formulating a model with matrices and vectors can lead to a considerable
speed gain – and compact code – while retaining the full flexibility of R.
The use of compiled code saves even more CPU time at the cost of a
higher development effort.
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Using matrices

Use of matrices

A Lotka-Volterra model with 4 species

> model <- function(t, n, parms) {
+ with(as.list(c(n, parms)), {
+ dn1 <- r1 * n1 - a13 * n1 * n3
+ dn2 <- r2 * n2 - a24 * n2 * n4
+ dn3 <- a13 * n1 * n3 - r3 * n3
+ dn4 <- a24 * n2 * n4 - r4 * n4
+ return(list(c(dn1, dn2, dn3, dn4)))
+ })
+ }
> parms <- c(r1 = 0.1, r2 = 0.1, r3 = 0.1, r4 = 0.1, a13 = 0.2, a24 = 0.1)
> times = seq(from = 0, to = 500, by = 0.1)
> n0 = c(n1 = 1, n2 = 1, n3 = 2, n4 = 2)

> system.time(out <- ode(n0, times, model, parms))

user system elapsed
3.02 0.00 3.02

Source: examples/lv-plain-or-matrix.R.txt

examples/lv-plain-or-matrix.R.txt
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Using matrices

Use of matrices

A Lotka-Volterra model with 4 species

> model <- function(t, n, parms) {
+ with(parms, {
+ dn <- r * n + n * (A %*% n)
+ return(list(c(dn)))
+ })
+ }
> parms <- list(
+ r = c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1),
+ A = matrix(c(0.0, 0.0, -0.2, 0.0, # prey 1
+ 0.0, 0.0, 0.0, -0.1, # prey 2
+ 0.2, 0.0, 0.0, 0.0, # predator 1; eats prey 1
+ 0.0, 0.1, 0.0, 0.0), # predator 2; eats prey 2
+ nrow = 4, ncol = 4, byrow = TRUE)
+ )

> system.time(out <- ode(n0, times, model, parms))

user system elapsed
1.66 0.00 1.70

Source: examples/lv-plain-or-matrix.R.txt

examples/lv-plain-or-matrix.R.txt
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Using matrices

Results

I plot(out) will show the results.

I Note that the “plain” version has only 1 to 1 connections, but the
matrix model is already full connected (with most connections are
zero). The comparison is insofar unfair that the matrix version
(despite faster execution) is more powerful.

I Exercise: Create a fully connected model in the plain version for a
fair comparison.

I A parameter example (e.g. for weak coupling) can be found on:
http:

//tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html

http://tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html
http://tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html
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Compiled code

Using compiled code

All solvers of deSolve

I allow direct communication between solvers and a compiled model.

See vignette ("compiledCode") [15]

Principle

I Implement core model (and only this) in C or Fortran,

I Use data handling, storage and plotting facilities of R.

examples/compiled_lorenz/compiledcode.svg

examples/compiled_lorenz/compiledcode.svg
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Compiled code

The End

Thank you!

More Info:
http://desolve.r-forge.r-project.org

http://desolve.r-forge.r-project.org
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Finally
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Finally
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In W. Härdle and B. Rönz, editors, COMPSTAT 2002 – Proceedings in Computational Statistics, pages 575–580, Heidelberg, 2002.
Physica-Verlag.

[8] M. C. Mackey and L. Glass.
Oscillation and chaos in physiological control systems.
Science, 197:287–289, 1977.



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

Finally

Bibliography II

[9] Linda R. Petzold.
Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations.
SIAM Journal on Scientific and Statistical Computing, 4:136–148, 1983.

[10] Thomas Petzoldt and Karsten Rinke.
simecol: An object-oriented framework for ecological modeling in R.
Journal of Statistical Software, 22(9):1–31, 2007.

[11] R Development Core Team.
R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

[12] O.E. Rossler.
An equation for continous chaos.
Physics Letters A, 57 (5):397–398, 1976.

[13] L. F. Shampine, I. Gladwell, and S. Thompson.
Solving ODEs with MATLAB.
Cambridge University Press, Cambridge, 2003.

[14] L.F Shampine and S. Thompson.
Solving ddes in matlab.
App. Numer. Math., 37:441–458, 2001.

[15] K Soetaert, T Petzoldt, and RW Setzer.
R-package deSolve, Writing Code in Compiled Languages, 2009.
package vignette.

[16] Karline Soetaert and Filip Meysman.
Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R.
Environmental modelling and software, page in press, 2011.



Introduction Model Specification Solvers Plotting Forcings + Events Delay Diff. Equations Partial Diff. Equations Speeding up

Finally

Bibliography III

[17] Karline Soetaert and Thomas Petzoldt.
Inverse modelling, sensitivity and monte carlo analysis in R using package FME.
Journal of Statistical Software, 33(3):1–28, 2010.

[18] Karline Soetaert and Thomas Petzoldt.
Solving ODEs, DAEs, DDEs and PDEs in R.
Journal of Numerical Analysis, Industrial and Applied Mathematics, in press, 2011.

[19] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer.
Solving Differential Equations in R.
The R Journal, 2(2):5–15, December 2010.

[20] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer.
Solving differential equations in R: Package deSolve.
Journal of Statistical Software, 33(9):1–25, 2010.

[21] Stefan Theußl and Achim Zeileis.
Collaborative Software Development Using R-Forge.
The R Journal, 1(1):9–14, May 2009.

[22] B. van der Pol and J. van der Mark.
Frequency demultiplication.
Nature, 120:363–364, 1927.


	Introduction
	Installing
	Getting help

	Model Specification
	One equation
	Coupled equations
	Exercise

	Solvers
	Solvers
	Stiffness
	Accuracy

	Plotting
	Overview
	Example: Chaos
	Multiple scenarios

	Forcings + Events
	External Variables
	Events

	Delay Diff. Equations
	Partial Diff. Equations
	1-D PDEs
	2-D PDEs

	Speeding up
	Using matrices
	Compiled code
	Finally


