

Differential Equations in R Tutorial useR Conference Los Angeles 2014

Karline Soetaert, & Thomas Petzoldt

Centre for Estuarine and Marine Ecology (CEME) Royal Netherlands Institute for Sea Research (NIOZ Yerseke, The Netherlands

karline.soetaert@nioz.nl

Technische Universität Dresden Faculty of Environmental Sciences Institute of Hydrobiology 01062 Dresden Germany

thomas.petzoldt@tu-dresden.de

2014-06-30

Intro Mo							CPU	
000000		00	00	000	00000	000000	0000	

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,
- Fitting models to data,

Intro							CPU	
	00000	00	00 00000000	000	00000	000000	0000	

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,
- Fitting models to data,
- Forcing functions and events
- Partial differential equations with ReacTran
- Speeding up

Intro					Forcing		CPU I	
	00000	00 0000000000	00 00000000	000 0000000000	00000 000000000000000000000000000000000	000000	0000	
Install	ing							

Download R from the CRAN website: http://cran.r-project.org/

Intro							CPU	
	000000	00 0000000000	00 00000000	000 0000000000	00000 00000000000000000	000000	0000	
1								

Install a suitable editor

...e.g. <u>RStudio</u>

dema_dhenostat.R × • lorenzx ×		Workspace History	y	-
🖾 Source on Save - 🥱 🖉 - 🚍	-Ran 🍉 😏 -Seurce	Gelead- 🔛 Save	e - 🖙 Import Dataset - 🥑 Clear All	
1 ***********************		Data		
2 ## Soctaert and Heysman ## 3 ## environmental modelling ##		a	3 obs. of 2 variables	1
3 ## environmental modelling ##		P	11x11 double matrix	1
5 ## Lorenz model ##		xy	20 obs. of 2 variables	
6 ## Example, template ##		Values		
7 ****************************		Biomass	numeric[11]	
a 9 #		eff	numeric[11]	
0 # the model parameters: #		LN	1=[12]	
1 //		Names	character [11]	
2 3 parameters c(a = -8/3,		PB	numer ic [11]	
3 parameters⇔c(a = -8/3, 4 b = -10,			none rejerj	
5 c = 28)		Files Plots Pack	ages Help	
6		🖕 🗉 🤌 Zoom	- Expert • • • • Clear All	
f the initial conditions: f				
9 Free Initial conditions: #			Lorenz	and a shart
0			Lorenz	model
1 state <-c(X = 1,				Y
Y - 1,			x	Ŷ
3 Z = 1)		-		8-1
5 f		ş- 1	المتبتاء الكالم أسلمته	التبالية أنعا أنجا أنجابا
6 # the model equations: #		1 4	AANALALARI JILA JILANNI	2
7 ##		8 - 44		
		· · · ·		
		8-14		- • HI JAWAN JA MAN
9 Lorenz <- function(t, state, parameters)			an tha ha ha ha ha ha ha ha ha	
<pre>9 Lorenz <- function(t, state, parameters) 0 (1 with(as.list(c(state,parameters)),(</pre>		8 - 2 -		and the second state of a language of the second state of the seco
0 Lorenz <- function(t, state, parameters) 0 { 1 with(as.Hist(c(state,parameters)),{	R Source 2	8-		and the second state of a language of the second state of the seco
b Lorenz <- function(t, state, parameters) b with(as.list(c(state,parameters)),(1 @ digutce):	R Solpt 2	8-		
<pre>0 Lorenz <- function(t, state, parameters) 0 { 1 with(as.Hist(c(state,parameters)),{ 1 B(doptere):</pre>	R Sovet =	8-		
© (orene <- function(t, state, parameters)) with(as.list(state, parameters)),(□ Ø/melens : 		8-	11111111111111111111111111111111111111	
l corez ~ funct(or(t, state, parameters)) with(tas)tist((tate, parameters)), (■ functors) one √ ⊘		8-		
0 corear - funct(dolt, state, parameters) thicks.hist(c(state,parameters)),(thicks.hist(c(state,parameters)),(things the oscill things the		8-	time	
(core - function(), state, guesters) which, lin(c(state, guesters)), (Bhelens: Solving the model: Solving the model:		8-		€ - -
B core - function(r); state, parameters) withinks introduction (core and core), (B floreners		8-0	time	
E corar → function(t), state, parameters) ↓ thetas.http://state.aparameters).(⊕ function.http://state.aparameters).(⊕ function times and the function of		8-0	time	
E conte → nection(t, state, parameters)		8-0	time	€ - 0 20 40 60 80 100 1000
<pre>0 core - nection(s, state, parameters) definition.ltm(c(state, parameters)).(The Biological Action and the state of the state of</pre>		8-0	time	P
<pre>0 core = nection(t, state, parameters) 0 core = nection(t, state, parameters)).(1 Brownin Brownin Brownin Core = nection(t) Core = nect</pre>			time	
Normal Control (1), state, parameters) → University (1), (1) → University (1), (1) → University (1), (1) → University (1), (1) → University (1), (1), (1), (1), (1), (1), (1), (1),			time	
<pre>0 core - nection(s, state, parameters) i core - nection(s, state, parameters)).(the network.like(scate, parameters)).(the network - network</pre>			time	
B order → Institut(s, tatas, parameters) wind(s, th(s)) wind(s, th(s)) B order → Institut(s)				
Brownii Brownii Storing the model Storing the model Storing the model Storing the model Storing			time	

Intro					Forcing		CPU	
	00000	00 0000000000	00 00000000	000	00000 00000000000000000	000000	0000	
Instal	ling							

Packages can be installed from within R or Rstudio:

	2						
		Eile Edit ⊆oo	de <u>V</u> iew <u>P</u> lots ;	ession <u>B</u> uild [ebug Jools He	lp	
			Source Q Z	> - Em	rironment History		
R Console		2 lib	rary(deSolve) - rary(FME) rary(Cairo)	Install from:		② Configuring R	epositories
II V		4		Repository (CRAN	Ŋ		-
File Edit Misc Packages Windows He	dp .		A two compart comp <- funct				
Load package		6 * two	<pre>ith(as list(c)</pre>	Packages (separate	e multiple with spac	e or comma):	
>		8 1		deSolve rootSolve	bvp		
> Set CRAN mirror			op Level) 0	bvpSolve ary:			
Select repositories		Console ~/ @	> > on now co	C:/Users/thpe/R/v	vin-library/3.1 [Defa	ult]	•
Install package(s)		or R packa	ges in public				
> Update packages		Turne 'demo	()' for some	Install depender	ncies		
>		'heln()' f	or on-line he				
> Install package(s) from	local zip files	'help.star	t()' for an H face to help.			Install	Cancel
8		The lack					

RStudio

\ldots or via the command line

```
install.packages("deSolve", dependencies = TRUE)
```

Intro					Forcing		CPU	
	00000	00 0000000000	00 00000000	000	00000 00000000000000000	000000	000	
Install	ing							

Several packages deal with differential equations

- deSolve: main integration package
- rootSolve: steady-state solver
- bvpSolve: boundary value problem solvers
- deTestSet: ODE and DAE test set + additional solvers
- ReacTran: partial differential equations
- simecol: interactive environment for implementing models

All packages have at least one author in common \rightarrow consistent interface.

More, see CRAN Task View: Differential Equations

Intro					Forcing		CPU	
	00000	00	00	000	00000	000000	000	
Gettin	g help							

Getting help

- > library(deSolve)
- > ?deSolve
 - opens the main help page containing
 - a short explanation
 - a link to the main manual (vignette)
 "Solving Initial Value Differential Equations in R"
 - links to additional manuals, papers and online resources
 - references
 - a first example
 - all our packages have such a ?<packagename> help file.

Intro						Forcing			CPU	
	000000		00	00	000	00000	000000		0000	
	ng help	000000000	000000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

- > library(deSolve)
- > example(deSolve)

time

		Models					Forcing		CPU	
		00000		00 0000000000	00 00000000	000	00000 000000000000000000000000000000000	000000	0000	
Int	trode	ictory ava	mala							

Model specification

	Models					Forcing		CPU	
	000000		00 0000000000	00 00000000	000 0000000000	00000 000000000000000000000000000000000	000000	0000	
Intro	ductory exa	imple							

Logistic growth

Differential equation

$$\frac{dN}{dt} = r \cdot N \cdot \left(1 - \frac{N}{K}\right)$$

Analytical solution

$$N_t = \frac{KN_0e^{rt}}{K + N_0\left(e^{rt} - 1\right)}$$

R implementation

Numerical simulation in R

Why numerical solutions?

- Not all systems have an analytical solution,
- Numerical solutions allow discrete forcings, events, ...

Why R?

- If standard tool for statistics, why Prog\$\$\$ for dynamic simulations?
- \blacktriangleright The community and the packages \rightarrow useR!2014

Numerical solution of the logistic equation

		Models							CPU	
		00000		00	00 00000000	000	00000	000000	0000	
In	trodu	ictory exa	mple							

Inspecting output

Print to screen
> head(out, n = 4)
 time N
[1,] 0 0.1000000
[2,] 1 0.1104022
[3,] 2 0.1218708
[4,] 3 0.1345160

Summary

> summary(out)

	N
Min.	0.100000
1st Qu.	1.096000
Median	5.999000
Mean	5.396000
3rd Qu.	9.481000
Max.	9.955000
N	101.000000
sd	3.902511

Plotting

time

o Moo	dels								CPU	
		0000	00	00	000	00000	000000		0000	
	0000		0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		

Introductory example

	la return code
re	turn code (idid) = 2
Ir	tegration was successful.
INTE	GER values
1	The return code : 2
-	The return code : 2 The number of steps taken for the problem so far: 105
2	The return code : 2 The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211
2 3	The number of steps taken for the problem so far: 105
2 3 5	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211
2 3 5 6	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211 The method order last used (successfully): 5
2 3 5 6 7	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211 The method order last used (successfully): 5 The order of the method to be attempted on the next step: 5
2 3 5 6 7 8	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211 The method order last used (successfully): 5 The order of the method to be attempted on the next step: 5 If return flag =-4,-5: the largest component in error vector 0
2 3 5 6 7 8 9	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211 The method order last used (successfully): 5 The order of the method to be attempted on the next step: 5 If return flag =-4,-5: the largest component in error vector 0 The length of the real work array actually required: 36
2 3 5 6 7 8 9 14	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211 The method order last used (successfully): 5 The order of the method to be attempted on the next step: 5 If return flag =-4,-5: the largest component in error vector 0 The length of the real work array actually required: 36 The length of the integer work array actually required: 21
2 3 5 6 7 8 9 14 15	The number of steps taken for the problem so far: 105 The number of function evaluations for the problem so far: 211 The method order last used (successfully): 5 The order of the method to be attempted on the next step: 5 If return flag =-4,-5: the largest component in error vector 0 The length of the real work array actually required: 36 The length of the integer work array actually required: 21 The number of Jacobian evaluations and LU decompositions so far:

RSTATE values

Coupled ODEs: the rigidODE problem

Problem

- Euler equations of a rigid body without external forces.
- ► Three dependent variables (y₁, y₂, y₃), the coordinates of the rotation vector,
- > I_1 , I_2 , I_3 are the principal moments of inertia.

[3] E. Hairer, S. P. Norsett, and G Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2009

Coupled ODEs: the rigidODE equations

Differential equation

$$\begin{array}{rcl} y_1' &=& (l_2 - l_3)/l_1 \cdot y_2 y_3 \\ y_2' &=& (l_3 - l_1)/l_2 \cdot y_1 y_3 \\ y_3' &=& (l_1 - l_2)/l_3 \cdot y_1 y_2 \end{array}$$

Parameters

$$I_1 = 0.5, I_2 = 2, I_3 = 3$$

Initial conditions

$$y_1(0) = 1, y_2(0) = 0, y_3(0) = 0.9$$

Coupled ODEs: the rigidODE problem

R implementation

```
> library(deSolve)
> rigidode <- function(t, y, parms) {</pre>
+ dy1 <- -2 * y[2] * y[3]
+ dy2 <- 1.25 * y[1] * y[3]
+ dy3 < -0.5 * y[1] * y[2]
   list(c(dv1. dv2. dv3))
+
+ }
> yini <- c(y1 = 1, y2 = 0, y3 = 0.9)
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode (times = times, y = yini, func = rigidode, parms = NULL)
> head (out, n = 3)
     time
                 y1
                            y2
                                      yЗ
[1,] 0.00 1.0000000 0.0000000 0.9000000
[2,] 0.01 0.9998988 0.01124925 0.8999719
[3,] 0.02 0.9995951 0.02249553 0.8998875
```

	Models				Forcing			CPU	
000		00	00	000	00000	000000	00	0000	
00	oled equatio	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	000000		

Coupled ODEs: plotting the rigidODE problem

- > plot(out)
- > library(scatterplot3d)
- > par(mar = c(0, 0, 0, 0))
- > scatterplot3d(out[,-1])

15 20

	Models					Forcing		CPU	
000	00000		00	00	000	00000	000000	0000	
Cou	oled equati	ons							

Exercise

The Rössler equations

Initial Conditions

$$\begin{array}{rcl} y_1' &=& -y_2 - y_3 \\ y_2' &=& y_1 + a \cdot y_2 \\ y_3' &=& b + y_3 \cdot (y_1 - c) \end{array}$$

 $y_1 = 1, y_2 = 1, y_3 = 1$

Parameters

$$a = 0.2, b = 0.2, c = 5$$

Tasks

- ▶ Solve the ODEs on the interval [0, 100]
- Produce a 3-D phase-plane plot
- Use file examples/rigidODE.R.txt as a template

[13] O.E. Rössler. An equation for continous chaos. Physics Letters A, 57 (5):397-398, 1976.

Intro Models Solv				Forcing			CPU	
	00	00	000	00000	000000	00	0000	

Solvers ...

Solver overview, stiffness, accuracy

Integration methods: package deSolve [22]

Intro Models Solv				Forcing			CPU	
	00	00	000	00000	000000		0000	
Overview	000000000000000000000000000000000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

Solver overview: package deSolve

Solver	Notes	stiff	y'=f(t,y)	My'=f(t,y)	F(y',t,y)=0	Roots	Events	Lags (DDE)	Nesting
Isoda/Isodar	automatic method selection	auto	x			x	X	X	
Isode	bdf, adams,	user defined	X			X	X	X	
Isodes	sparse Jacobian	yes	X			X	X	X	
vode	bdf, adams,	user defined	X				X	X	
zvode	complex numbers	user defined	X				X	X	
daspk	DAE solver	yes	X	X	X		X	X	
radau	DAE; implicit RK	yes	X	X		X	X	X	
rk, rk4, euler	euler, ode23, ode45, rkMethod	no	x				x		X
iteration	returns state at t+dt	no	X				X		X

- ode, ode.band, ode.1D, ode.2D, ode.3D: top level functions (wrappers)

- red: functionality added by us

Options of solver functions

Top level function

```
> ode(y, times, func, parms,
+ method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
+ "euler", "rk4", "ode23", "ode45", "radau",
+ "bdf", "bdf_d", "adams", "impAdams_d",
+ "iteration"), ...)
```

Workhorse function: the individual solver

```
> lsoda(v, times, func, parms, rtol = 1e-6, atol = 1e-6,
   jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
+
   verbose = FALSE, nroot = 0, tcrit = NULL,
+
+
   hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
+
   maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
   maxsteps = 5000, dllname = NULL, initfunc = dllname,
+
   initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
+
   outnames = NULL, forcings = NULL, initforc = NULL,
+
   fcontrol = NULL, events = NULL, lags = NULL,...)
+
```

			Solv			Forcing		CPU	
			00000	00	000	00000 000000000000000000000000000000000	000000	000	
Ove	rvie	w							

Arghhh, which solver and which options???

Problem type?

- ► ODE: use ode,
- DDE: use dede,
- DAE: daspk or radau,
- PDE: ode.1D, ode.2D, ode.3D,

... others for specific purposes, e.g. root finding, difference equations (euler, iteration) or just to have a comprehensive solver suite (rk4, ode45).

Stiffness

- default solver lsoda selects method automatically,
- adams or bdf may speed up a little bit if degree of stiffness is known,
- vode or radau may help in difficult situations.

Solvers for stiff systems

Stiffness

- Difficult to give a precise definition.
- pprox system where some components change more rapidly than others.

Sometimes difficult to solve:

- solution can be numerically unstable,
- may require very small time steps (slow!),
- deSolve contains solvers that are suitable for stiff systems,
- But: "stiff solvers" slightly less efficient for "well behaving" systems.
 - Good news: lsoda selects automatically between stiff solver (bdf) and nonstiff method (adams).

Van der Pol equation

Oscillating behavior of electrical circuits containing tubes [24]. 2^{nd} order ODE

$$y'' - \mu(1 - y^2)y' + y = 0$$

 \dots must be transformed into two 1^{st} order equations

$$y'_1 = y_2$$

 $y'_2 = \mu \cdot (1 - y_1^2) \cdot y_2 - y_1$

- ▶ Initial values for state variables at t = 0: $y_{1_{(t=0)}} = 2, y_{2_{(t=0)}} = 0$
- ▶ One parameter: $\mu = \text{large} \rightarrow \text{stiff system}$; $\mu = \text{small} \rightarrow \text{non-stiff}$.

		Solv				Forcing			CPU	
	00000		00	00	000	00000	000000	00	0000	
Stiffn										

Model implementation

```
> library(deSolve)
> vdpol <- function (t, y, mu) {</pre>
  list(c(
+
        v[2],
+
       mu * (1 - y[1]<sup>2</sup>) * y[2] - y[1]
+
+
   ))
+ }
> yini <- c(y1 = 2, y2 = 0)
> stiff <- ode(y = yini, func = vdpol, times = 0:3000, parms = 1000)
> nonstiff <- ode(y = yini, func = vdpol, times = seq(0, 30, 0.01), parms = 1)
> head(stiff, n = 5)
     time
                y1
                               y2
```

[1,]	0	2.000000	0.0000000000
[2,]	1	1.999333	-0.0006670373
[3,]	2	1.998666	-0.0006674088
[4,]	З	1.997998	-0.0006677807
[5,]	4	1.997330	-0.0006681535

Interactive exercise

- The following link opens in a web browser. It requires a recent version of Firefox or Chrome, ideally in full-screen mode. Use Cursor keys for slide transition:
- **Left cursor** guides you through the full presentation.
- Mouse and mouse wheel for full-screen panning and zoom.
- **Pos1** brings you back to the first slide.
 - examples/vanderpol.svg
- ▶ The following opens the code as text file for life demonstrations in R
 - examples/vanderpol.R.txt

		Models	Solv				Forcing				CPU	
												000
00		00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000		000000	000000		
Stiffness												

Plotting

Stiff solution > plot(stiff, type = "l", which = "y1", 1wd = 2, ylab = "y", + main = "IVP ODE, stiff") + IVP ODE, stiff 2 1 > 0 -1 -2 0 500 1000 1500 2000 2500 3000 time

time

Nonstiff solution

0 5 10 15 20 25 30

Default solver, 1soda:

```
> svstem.time(
   stiff <- ode(vini, 0:3000, vdpol, parms = 1000)</pre>
+
+ )
  user system elapsed
  0.08 0.00 0.08
> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1)
+ )
  user system elapsed
  0.08 0.00 0.08
Implicit solver, bdf:
> system.time(
   stiff <- ode(vini, 0:3000, vdpol, parms = 1000, method = "bdf")
+
+ )
  user system elapsed
  0.06 0.00 0.07
> system.time(
+ nonstiff <- ode(vini, seq(0, 30, by = 0.01), vdpol, parms = 1, method = "bdf")
+ )
  user system elapsed
  0.05 0.00 0.04
\Rightarrow Now use other solvers, e.g. adams, ode45, radau.
```

		Solv				Forcing				CPU	
00	00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000		000000	000000		
Stiffness											

Results

Timing results; your computer may be faster:

solver	non-stiff	stiff
ode23	0.37	271.19
lsoda	0.26	0.23
adams	0.13	616.13
bdf	0.15	0.22
radau	0.53	0.72

Comparison of solvers for a stiff and a non-stiff parametrisation of the van der Pol equation (time in seconds, mean values of ten simulations on my old AMD X2 3000 CPU).

		Solv				Forcing				CPU	
00	00000	00000000000	00000000000	00000000	0000000000	000000000000000000000000000000000000000		000000	000000		
Stiffness											

Accuracy and stability

- Options atol and rtol specify accuracy,
- Stability can be influenced by specifying hmax and maxsteps.

Accuracy and stability - ctd

atol (default 10^{-6}) defines absolute threshold,

- select appropriate value, depending of the size of your state variables,
- may be between $\approx 10^{-300}$ (or even zero) and $\approx 10^{300}$.
- rtol (default 10^{-6}) defines relative threshold,
 - It makes no sense to specify values < 10⁻¹⁵ because of the limited numerical resolution of double precision arithmetics (≈ 16 digits).
- hmax is automatically set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. Sometimes, it may be set to a smaller value to improve robustness of a simulation.

hmin should normally not be changed.

Example: Setting rtol and atol: examples/PCmod_atol_0.R.txt

				Plot			Forcing				CPU	
00			000000000000000000000000000000000000000	••	00 00000000	000	00000 000000000000000000000000000000000		000000		000	
Overview												

Plotting, scenario comparison, observations

				Plot			Forcing				CPU	
00			00000	000000000000000000000000000000000000000	00 00000000	000	00000		000000		000	
Overview												

Plotting and printing

Methods for plotting and extracting data in deSolve

- subset extracts specific variables that meet certain constraints.
- plot, hist create one plot per variable, in a number of panels
- image for plotting 1-D, 2-D models
- plot.1D and matplot.1D for plotting 1-D outputs
- ?plot.deSolve opens the main help file

rootSolve has similar functions

- subset extracts specific variables that meet certain constraints.
- plot for 1-D model outputs, image for plotting 2-D, 3-D model outputs
- ?plot.steady1D opens the main help file

	Plot			Forcing		CPU End	
	00	00	000	00000	000000	0000 00 0	
Examples							ļ

The Lorenz equations

- chaotic dynamic system of ordinary differential equations
- ▶ three variables, X, Y and Z represent idealized behavior of the earth's atmosphere.

```
> chaos <- function(t, state, parameters) {</pre>
   with(as.list(c(state)), {
+
+ dx < -\frac{-8}{3} * x + y * z
+ dy < -10 * (y - z)
+ dz <- -x * y + 28 * y - z
+ list(c(dx, dy, dz))
+ })
+ }
> yini <- c(x = 1, y = 1, z = 1)
> vini2 <- vini + c(1e-6, 0, 0)
> times <- seq(0, 30, 0.01)
> out <- ode(y = yini, times = times, func = chaos, parms = 0)
> out2 <- ode(y = yini2, times = times, func = chaos, parms = 0)
```


Plotting multiple scenarios

- The default for plotting one or more objects is a line plot
- We can plot as many objects of class deSolve as we want
- By default different outputs get different colors and line types

> plot(out, out2, lwd = 2, lty = 1)

Changing the panel arrangement

- Default: Automatic number of panels per page up to 3 × 3
- Use mfrow() or mfcol() to overrule

> plot(out, out2, 1wd = 2, 1ty = 1, mfrow = c(1, 3))

Important: upon returning the default mfrow is NOT restored.

			Plot			Forcing			CPU E	
00		00000	00	00	000	00000	000000		00000	0
Exa		000000000	0000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

Plotting style

- We can change the style of the dataseries (col, lty, ...)
 - will be effective for all figures
- ▶ We can change individual *figure* settings (title, labels, ...)
 - vector input can be specified by a list; NULL will select the default
- > plot(out, out2, col = c("blue", "orange"),
- + main = c("Xvalue", "Yvalue", "Zvalue"),
- + $x \lim = \text{list}(c(20, 30), c(25, 30), \text{NULL}), \text{mfrow} = c(1, 3))$

		Plot			Forcing		CPU	
000	000000	000000000000000000000000000000000000000	00 00000000	000	00000 00000000000000000	000000	0000	
Exam	ples							

R's default plot ...

is used if we extract single colums from the deSolve object

		Plot			Forcing		CPU	
000	000000	00 00000000000	00 00000000	000	00000 000000000000000000000000000000000	000000	0000	
Exam	ples							

Use deSolve's subset ...

... to select values that meet certain conditions

> XY <- subset(out, select = c("x", "y"), subset = y < 10 & x < 40)
> plot(XY, main = "Lorenz butterfly", xlab = "x", ylab = "y", pch = "."

Lorenz butterfly

		Plot			Forcing			CPU	
	00000	00	00	000	00000	000000		0000	
o camp		000000000000000000000000000000000000000	00000000	0000000000		000000	000000		

Plotting multiple scenarios ...

... is simple if number of outputs is known

У

time

		Plot			Forcing		CPU	
	000000	00 000000000000	00 00000000	000 0000000000	00000 000000000000000000000000000000000	000000	0000	
Exam	ples							

Plotting multiple scenarios

... with many or an unknown number of outputs in a list

у

time

Observed data

Arguments obs and obspar are used to add observed data

У

time

		Plot			Forcing			CPU	
000	000000	00	00 00000000	000	00000	000000	00	000	
Exam	ples								

Observed data

A list of observed data is allowed

> obs2 <- data.frame(time = c(1,5,10,20,25), y = c(12,10,8,9,10)) > obs1 <- data.frame(time = c(1,5,10,20,25), y = c(1,6,8,9,10)) > plot(out, out2, col = c("blue", "red"), lwd = 2, obs = list(obs1, obs2), + +

		Fit		Forcing			CPU	
	00	••	000		000000		000	
00 00000 00000000 Overview	000000000000000000000000000000000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

Fitting models to data

			Fit		Forcing		CPU	
	000000	00 0000000000	00000000	000	00000 00000000000000000	000000	0000	
Over	view							

Fitting models

Given:

- ► a dynamic model
- data for one or more state variables

Wanted:

a set of parameters that fits the data

Approach \rightarrow package FME:

- 1. try an initial guess for the parameters
- 2. define cost function (e.g. least squares) with modCost()
- 3. fit the model with modFit
- 4. plot model and data

Pharmacokinetic two compartment model

- > a substance accumulated in the fat and eliminated by the liver
- \blacktriangleright two state variables, concentration in the fat C_F and in the liver C_L
- ▶ 3 parameters: transport (k_{FL}, k_{LF}) and elimination (k_e)

$$\frac{dC_L}{dt} = k_{FL}C_F - k_{LF}C_L - k_eC_L$$
$$\frac{dC_F}{dt} = k_{LF}C_L - k_{FL}C_F$$

> library("FME")
> twocomp <- function (time, y, parms, ...) {
+ with(as.list(c(parms, y)), {
+ dCL <- kFL * CF - kLF * CL - ke * CL # concentration in liver
+ dCF <- kLF * CL - kFL * CF # concentration in fat
+ list(c(dCL, dCF))
+ })
+ }</pre>

Data and initial guess

> dat <- data.frame(+ time = seq(0, 28, 4), + CL = c(1.31, 0.61, 0.49, 0.41, 0.20, 0.12, 0.16, 0.21), + CF = c(1e-03, 0.041, 0.05, 0.039, 0.031, 0.025, 0.017, 0.012) +) > parms <- c(ke = 0.2, kFL = 0.1, kLF = 0.05) > times <- seq(0, 40, length=200) > y0 <- c(CL = 1, CF = 0) > out1 <- ode(y0, times, twocomp, parms) > plot(out1, obs = dat)

Define cost function (least squares):

```
> cost <- function(p) {
+ out <- ode(y0, times, twocomp, p)
+ modCost(out, dat, weight = "none") # try weight = "std" or "mean"
+ }</pre>
```

Note:

- naming of oservation and simulation data must be identical
- data may be given in cross table (wide) or data base format (long)
- different scaling and weighting options
- optional: sequential build-up of cost function

```
Intro Models Solv
                       Fit
                                                  DDE PDE
                                                               CPU End
Example: Fit a compartment model to data
Fit the model:
    > parms <- c(ke = 0.2, kFL = 0.1,
                                               kLF = 0.05)
   > fit <- modFit(f = cost, p = parms)</pre>
    > summary(fit)
   Parameters:
       Estimate Std. Error t value Pr(>|t|)
               0.01256 6.803 1.26e-05 ***
   ke
        0.08546
   kFL 0.67293 4.66953 0.144
                                    0.888
   kLF 0.06970 0.49269 0.141
                                    0.890
    ___
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Residual standard error: 0.09723 on 13 degrees of freedom
   Parameter correlation:
```

ke kFL kLF ke 1.0000 0.4643 0.4554 kFL 0.4643 1.0000 0.9932 kLF 0.4554 0.9932 1.0000

Compare output with data

- > out1 <- ode(y0, times, twocomp, parms)</pre>
- > out2 <- ode(y0, times, twocomp, coef(fit))</pre>
- > plot(out1, out2, obs=dat, obspar=list(pch=16, col="red"))

				Fit		Forcing		CPU	
	200000		00 0000000000	000000000	000 0000000000	00000 00000000000000000	000000	0000	
Exam	ole: Fit a	compartment mod	el to data						

Fit parameters and initial values

```
> cost <- function(p, data, ...) {
+ yy <- p[c("CL", "CF")]
+ pp <- p[c("ke", "kFL", "kLF")]
+ out <- ode(yy, times, twocomp, pp)
+ modCost(out, data, ...)
+ }</pre>
```

Good start parameters can be very important:

> #parms <- c(CL = 1.2, CF = 0.0, ke = 0.2, kFL = 0.1, kLF = 0.05)
> parms <- c(CL = 1.2, CF = 0.001, ke = 0.2, kFL = 0.1, kLF = 0.05)
> fit <- modFit(f = cost, p = parms, data = dat, weight = "std",
+ lower = rep(0, 5), upper = c(2,2,1,1,1), method = "Marq")</pre>

Fit parameters and initial values

- > y0 <- coef(fit)[c("CL", "CF")]
- > pp <- coef(fit)[c("ke", "kFL", "kLF")]
- > out3 <- ode(y0, times, twocomp, pp)</pre>
- > plot(out1, out2, out3, obs=dat, col=c("grey", "blue", "red"), lty = 1

CL

	Models 00000 00000		Plot 00 0000000000	Fit 00 00000000	State 000 0000000000000000000000000000000	Forcing 00000 000000000000000000000000000000	PDE 0000000 000000	DAE 00 000000	CPU 0000	
Exampl	e: Fita o	compartment mod	el to data							
		ummary(fi	t)							
		Estimat	e Std. E	rror t v	alue Pr()	> t)				
	CL	1.230139	4 0.072	1467 17	.051 2.94	1e-09 ***				
	CF	0.000682	1 0.0033	3118 0	.206 (0.841				
	ke	0.107334	8 0.0113	3231 9	.479 1.20	6e-06 ***				

kLF 0.0153857 0.0020289 7.583 1.08e-05 ***

kFL 0.1770370 0.0289392 6.118 7.55e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2032 on 11 degrees of freedom

Parameter correlation:

	CL	CF	ke	kFL	kLF
CL	1.000000	0.003152	0.54175	-0.3837	-0.5494
CF	0.003152	1.000000	0.04449	-0.2229	-0.3529
ke	0.541751	0.044489	1.00000	-0.7083	-0.4287
kFL	-0.383735	-0.222888	-0.70830	1.0000	0.8340
kLF	-0.549433	-0.352886	-0.42874	0.8340	1.0000

Plot		State	Forcing			CPU	
00	00	000	00000	000000	00	0000	

Steady-state

Solver overview, 1-D, 2-D, 3-D

Two packages for Steady-state solutions:

ReacTran: methods for numerical approximation of PDEs

- tran.1D(C, C.up, C.down, D, v, ...)
- tran.2D, tran.3D

rootSolve: special solvers for roots

- steady for 0-D models
- steady.1D, steady.2D, steady.3D for 1-D, 2-D, 3-D models

[18] Soetaert, K. and Meysman, F. (2012) Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software R Environmental Modelling and Software 32, 49–60

[21] Soetaert, K., Petzoldt, T. and Setzer, R. W. (2010 Solving Differential Equations in R The R Journal, 2010, 2, 5-15

		Models				State	Forcing			CPU	
						000					
oc		00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
Sol	vers										

Steady-state Solver overview: package rootSolve

Simple problems can be solved iteratively

Function	Description
stode	steady-state ODEs by Newton-Raphson method, full or banded Jacobian
stodes	steady-state ODEs by Newton-Raphson method, arbi- trary sparse Jacobian

Others are solved by dynamically running to steady-state

- steady(... method = "runsteady") for 0-D models
- steady.1D(... method = "runsteady") for 1-D models
- no special solver for higher dimensions but use ode.2D, ode.3D from deSolve for sufficiently long time

Options of solver functions

Top level function

> steady(y, time = NULL, func, parms, method = "stode", ...)

Workhorse function: the individual solver

Notes

- positive = TRUE forces to find relevant solutions for quantitities that can not be negative.
- ynames can be used to label the output useful for plotting

1-D problem: polluted estuary

Problem formulation

Ammonia and oxygen are described in an estuary. They react to form nitrate. The concentrations are at steady state.

- ▶ parameters: $k = 1, r = 0.1, p = 0.1, O_2 s = 300, v = 1000, D = 1e^7$
- The estuary is 100 km long.
- ► The boundary conditions are:

$$NH_3(0) = 500, O_2(0) = 50, NH_3(1e^5) = 10, O_2(1e^5) = 30$$

					State	Forcing			CPU	
	00000		00	00	000		000000			
00	00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
Examp	les									

Polluted estuary in R

define grid:

- > require(ReacTran)
- > N <- 1000
- > Grid <- setup.grid.1D(N = N, L = 100000)

derivative function:

```
> Estuary <- function(t, y, parms) {
    NH3 <- v[1:N]
+
    02 <- y[(N+1):(2*N)]
+
+
    tranNH3 < - tran.1D (C = NH3, D = 1e7, v = 1000,
              C.up = 500, C.down = 10, dx = Grid)$dC
+
   tran02 <- tran.1D (C = 02 , D = 1e7, v = 1000,
+
+
              C.up = 100, C.down = 250, dx = Grid)$dC
+
    r nit <- 0.1 * 02 / (02 + 1) * NH3
+
    dNH3 <- tranNH3 - r_nit
+
    d02 < -tran02 - 2 * r nit + 0.1 * (300 - 02)
+
+
    list(c(dNH3, dO2), r_nit = r_nit)
+ }
```

numerical solution:

```
> print(system.time(
+ std <- steady.1D(y = runif(2 * N), parms = NULL, names=c("NH3", "02"),
+ func = Estuary, dimens = N, positive = TRUE) ))
user system elapsed
0.10 0.00 0.09</pre>
```

					State	Forcing				CPU		
00	00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000		000000	000000			
Exam	Examples											

Plotting

```
> plot(std, which = c("NH3", "02", "r_nit"), lwd = 2,
+ mfrow = c(1,3), grid = Grid$x.mid, xlab = "distance, m",
+ ylab = c("mmol m-3", "mmol m-3", "mmol m-3 d-1"))
```


Plotting with Observations

Steady-state of a 2-D PDE

Problem formulation

A relatively stiff PDE is the combustion problem, describing diffusion and reaction in a 2-dimensional domain (from [6]). The steady-state problem is:

$$\mathsf{0} = -
abla \cdot (- \mathcal{K}
abla \mathcal{U}) + rac{\mathcal{R}}{lpha \delta} (1 + lpha - \mathcal{U}) \exp(\delta (1 - 1/\mathcal{U}))$$

- ▶ The domain is rectangular ([0,1]*[0,1])
- ▶ $K = 1, \alpha = 1$, $\delta = 20$, R = 5,
- Downstream boundary is prescribed as a known value (1)
- Upstream boundary: zero-flux

				State	Forcing			CPU	
	00000	00	00	000	00000	000000	00	0000	
Exam		 00000000000	00000000	0000000000000		000000	000000		

2-D combustion problem in R

grid and parameters:

```
> library(ReacTran)
> N <- 100
> Grid <- setup.grid.1D(0, 1, N = N)
> alfa <- 1; delta <- 20; R <- 5
```

derivative function:

```
> Combustion <- function(t, y, p) {
+ U <- matrix(nrow = N, ncol = N, data = y)
+
+ reac <- R /alfa/delta * (1+alfa-U) * exp(delta*(1-1/U))
+ tran <- tran.2D(C = U, D.x = 1, flux.x.up = 0, flux.y.up = 0, C.x.down = 1,
+ C.y.down = 1, dx = Grid, dy = Grid)
+ list (tran$dC+ reac)
+ </pre>
```

solution (10000 equations):

```
> print(system.time(
+ std <- steady.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
+ dimens = c(N, N), lrw = 1e6, positive = TRUE)
+ ))
user system elapsed
1.52 0.00 1.52
```

						State	Forcing				CPU	
00		00000	0000000000	0000000000	00000000	00000000000	000000000000000000000000000000000000000		000000	000000		
Exa	Examples											

Plotting

> image(std, main = "Combustion", legend = TRUE)

					State	Forcing			CPU	
000		00000 0 00000000	00 0000000000	00 00000000	000	00000 000000000000000000000000000000000	000000	00 000000	0000	
Exam	nples									

Steady-state of a 3-D PDE

Problem formulation

3-D problems are computationally heavy - only smaller problems can be solved in $\ensuremath{\mathsf{R}}$

Model of diffusion and simple reaction in a 3-dimensional domain.

$$0 = -\nabla \cdot (-D\nabla Y) - r * Y$$

- The domain is rectangular ([0,1] * [0,1] * [0,1])
- ▶ *D* = 1, *r* = 0.025,
- Initial condition: constant: U(x, y, 0) = 1.
- Upstream and Downstream boundaries: = 1

					State	Forcing			CPU	
00	00000	000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
Examr	les									

3-D problem in R

grid and parameters:

```
> library(ReacTran)
> n < -20
> Grid <- setup.grid.1D(0, 1, N = n)
derivative function:
> diffusion3D <- function(t, Y, par) {</pre>
+
       <- array(dim = c(n, n, n), data = Y) # vector to 3-D array
+
   УV
+
   dY <- -0.025 * vy
                                               # consumption
   BND <- matrix(nrow = n, ncol = n, 1) # boundary concentration
+
+
+
   dY < - dY + tran.3D(C = yy)
       C.x.up = BND, C.y.up = BND, C.z.up = BND,
+
        C.x.down = BND, C.y.down = BND, C.z.down = BND,
+
        D.x = 1, D.y = 1, D.z = 1,
+
        dx = Grid, dy = Grid, dz = Grid)dC
+
+
   return(list(dY))
+ }
```

solution (10000 equations):

```
> print(system.time(
+ ST3 <- steady.3D(y = rep(1, n*n*n), func = diffusion3D, parms = NULL,
+ pos = TRUE, dimens = c(n, n, n), lrw = 2000000) ))
user system elapsed
2.01 0.01 2.03</pre>
```

						State	Forcing		CPU	
00			000000000000000000000000000000000000000	00	00 00000000	000	00000 000000000000000000000000000000000	000000	000	
Exa	nple	es								

Plotting

a selection of 2-D projections, in the x-direction

- > image(ST3, mfrow = c(2, 2), add.contour = TRUE, legend = TRUE,
- dimselect = list(x = c(4, 8, 12, 16)))+

var 1 dim 1 = 12

var 1 dim 1 = 16

					Forcing			CPU	
200000		00	00	000	00000	000000		0000	
00000	0000000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	000000		

Under control: Forcing functions and events

Discontinuities in dynamic models

Most solvers assume that dynamics is *smooth* However, there can be several types of discontinuities:

- ▶ Non-smooth *external variables*
- Discontinuities in the *derivatives*
- Discontinuites in the values of the state variables

A solver does not have large problems with first two types of discontinuities, but changing the values of state variables is much more difficult.

External variables in dynamic models

... also called forcing functions

Why external variables?

- Some important phenomena are not explicitly included in a differential equation model, but imposed as a *time series*. (e.g. sunlight, important for plant growth is never "modeled").
- Somehow, during the integration, the model needs to know the value of the external variable at each time step!

External variables in dynamic models

Implementation in R

- R has an ingenious function that is especially suited for this task: function approxfun
- It is used in two steps:
 - First an interpolating function is constructed, that contains the data. This is done before solving the differential equation.

```
afun <- approxfun(data)
```

Within the derivative function, this interpolating function is called to provide the interpolated value at the requested time point (t):

```
tvalue <- afun(t)</pre>
```

?forcings will open a help file

				Forcing			CPU	
00000	00	00	000	000000000000000000000000000000000000000	000000	00	0000	
al Variabl	00000000000	00000000	00000000000		000000	000000		

Example: Predator-Prey model with time-varying input

This example is from [16]

```
Create an artificial time-series
```

```
> times <- seq(0, 100, by = 0.1)
> signal <- as.data.frame(list(times = times, import = rep(0, length(times))))</pre>
> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)</pre>
> signal[8:12.]
   times import
8
     0.7
     0.8
9
     0.9
               0
10
11
   1.0
               1
12
   1.1
               1
```

Create the interpolating function, using approxfun

```
> input <- approxfun(signal, rule = 2)
> input(seq(from = 0.98, to = 1.01, by = 0.005))
[1] 0.80 0.85 0.90 0.95 1.00 1.00 1.00
```

A Predator-Prey model with time-varying input

Use interpolation function in ODE function

```
> SPCmod <- function(t, x, parms) {
     with(as.list(c(parms, x)), {
+
+
+
     import <- input(t)</pre>
+
+
     dS \leftarrow import - b + S + P + g + C
   dP < -c * S * P - d * C * P
+
     dC \leq -e * P * C - f * C
+
     res <- c(dS, dP, dC)
+
     list(res, signal = import)
+
+
  })
+ }
> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0)
> xstart <- c(S = 1, P = 1, C = 1)
> out <- ode(y = xstart, times = times, func = SPCmod, parms)
```

				Forcing			CPU	
	00	00	000		000000		0000	
00 00000 000000000 External Variables	000000000000000000000000000000000000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	000000		

Plotting model output

> plot(out)

signal

100

80 100

Discontinuities in dynamic models: Events

What?

> An event is when the values of state variables change abruptly.

Events in Most Programming Environments

- > When an event occurs, the simulation needs to be restarted.
- ▶ Use of loops etc. ...
- Cumbersome, messy code

Events in R

- Events are part of a model; no restart necessary
- Separate dynamics inbetween events from events themselves
- Very neat and efficient!

Discontinuities in dynamic models, Events

Two different types of events in R

- Events occur at known times
 - Simple changes can be specified in a data.frame with:
 - name of state variable that is affected
 - the time of the event
 - the magnitude of the event
 - event method ("replace", "add", "multiply")
 - More complex events can be specified in an event function that returns the changed values of the state variables function(t, y, parms, ...).
- Events occur when certain conditions are met
 - Event is triggered by a root function
 - Event is specified in an event function

?events will open a help file

A patient injects drugs in the blood

Problem Formulation

- Describe the concentration of the drug in the blood
- ▶ Drug injection occurs at known times \rightarrow data.frame

Dynamics inbetween events

- The drug decays with rate b
- Initially the drug concentration = 0

```
> pharmaco <- function(t, blood, p) {
+ dblood <- - b * blood
+ list(dblood)
+ }
> b <- 0.6
> yini <- c(blood = 0)</pre>
```


A patient injects drugs in the blood

Specifying the event

- Daily doses, at same time of day
- Injection makes the concentration in the blood increase by 40 units.
- The drug injections are specified in a special event data.frame

```
> injectevents <- data.frame(var = "blood",
+ time = 0:20,
+ value = 40,
+ method = "add")
```

> head(injectevents)

var time value method 1 blood 0 40 add 2 blood 1 40 add 3 blood 40 add 2 4 blood 3 40 add 5 blood 4 40 add 6 blood 5 40 add

A patient injects drugs in the blood

Solve model

- Pass events to the solver in a list
- All solvers in deSolve can handle events
- Here we use the "implicit Adams" method

```
> times <- seq(from = 0, to = 10, by = 1/24)
> outDrug <- ode(func = pharmaco, times = times, y = yini,
+ parms = NULL, method = "impAdams",
+ events = list(data = injectevents))</pre>
```

							Forcing				CPU		
			00000	00	00	000			000000		0000		
0			000000000000000000000000000000000000000	00000000000	000000000	00000000000	000000000000000000000000000000000000000		000000	000000			
E١	Events												

plotting model output

> plot(outDrug)

time

An event triggered by a root: A Bouncing Ball

Problem formulation

- A ball is thrown vertically from the ground (y(0) = 0)
- ▶ Initial velocity (y') = 10 $m s^{-1}$; acceleration $g = 9.8 m s^{-2}$
- When ball hits the ground, it bounces.

ODEs describe height of the ball above the ground (y)

Specified as 2nd order ODE Specified as 1st order ODE

$$\begin{array}{rcl} y'' & = & -g & & y_1' & = & y_2 \\ y(0) & = & 0 & & & y_2' & = & -g \\ y'(0) & = & 10 & & & & y_1(0) & = & 0 \\ & & & & & y_2(0) & = & 10 \end{array}$$

[14] Shampine, L. F.; Gladwell, I. and Thompson, S. (2003) Solving ODEs with MATLAB. Cambridge University Press, 2003, 263

						Forcing			CPU	
	00000		00	00	000	00000	000000		0000	
00 Events		000000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	000000		

A Bouncing Ball

Dynamics inbetween events

The Ball Hits the Ground and Bounces

Root: the Ball hits the ground

- The ground is where height = 0
- Root function is 0 when $y_1 = 0$
 - > rootfunc <- function(t, y, parms) return (y[1])</pre>

Event: the Ball bounces

- ▶ The velocity changes sign (-) and is reduced by 10%
- Event function returns changed values of both state variables

```
> eventfunc <- function(t, y, parms) {
+ y[1] <- 0
+ y[2] <- -0.9*y[2]
+ return(y)
+ }</pre>
```

An event triggered by a root: the bouncing ball

Solve model

- Inform solver that event is triggered by root (root = TRUE)
- Pass event function to solver
- Pass root function to solver

Get information about the root

```
> attributes(out)$troot
```

[1] 2.040816 3.877551 5.530612 7.018367 8.357347 9.562428 10.647001 11.623117
[9] 12.501621 13.292274 14.003862 14.644290 15.220675 15.739420 16.206290 16.626472
[17] 17.004635 17.344981 17.651291 17.926970 18.175080 18.398378 18.599345 18.780215
[25] 18.942998 19.089501 19.221353 19.340019 19.446818 19.542936 19.629441 19.707294
[33] 19.777362 19.840421 19.897174 19.948250 19.994217

An event triggered by a root: the bouncing ball

> plot(out, select = "height")

time

An event triggered by a root: the bouncing ball Create Movie-like output

```
for (i in seq(1, 2001, 10)) {
    plot(out, which = "height", type = "l", lwd = 1,
        main = "", xlab = "Time", ylab = "Height"
    )
    points(t(out[i,1:2]), pch = 21, lwd = 1, col = 1, cex = 2,
        bg = rainbow(30, v = 0.6)[20-abs(out[i,3])+1])
    Sys.sleep(0.01)
}
```


Exercise: Add events to a logistic equation

ODE: Logistic growth of a population

$$y' = r \cdot y \cdot \left(1 - \frac{y}{K}\right)$$

$$r = 1, K = 10, y_0 = 2$$

Events: Population harvested according to several strategies

- 1. No harvesting
- 2. Every 2 days the population's density is reduced to 50%
- 3. When the population approaches 80% of its carrying capacity, its density is halved.

							Forcing			CPU	
			00000	00	00	000		0000000			
oc		00000	000000000000000000000000000000000000000	0000000000	00000000	00000000000	000000000000000	000000	000000		
Eve	ents										

Exercise: Add events to a logistic equation - ctd

Tasks:

- Run the model for 20 days
- Implement first strategy in a data.frame
- Second strategy requires root and event function
- Use file examples/logisticEvent.R.txt as a template

							DDE			CPU			
	000000		00 0000000000	00 00000000	000	00000 00000000000000000		000000	00 000000	0000			
\//bit	White blood calls												

Delay Differential Equations

What?

Delay Differential Equations are similar to ODEs except that they involve *past* values of variables and/or derivatives.

DDEs in R: R-package deSolve

- dede solves DDEs
- lagvalue provides lagged values of the state variables
- lagderiv provides lagged values of the derivatives

Example: Chaotic Production of White Blood Cells

Mackey-Glass Equation:

- y: current density of white blood cells,
- > y_{τ} is the density τ time-units in the past,
- first term equation is production rate
- b is destruction rate

$$y' = ay_{\tau} \frac{1}{1+y_{\tau}^{c}} - by$$

 $y_{\tau} = y(t-\tau)$
 $y_{t} = 0.5$ for $t \le 0$
(1)

For $\tau = 10$ the output is periodic,

For $\tau = 20$ cell densities display a chaotic pattern

					Forcing	DDE			CPU	
		00	00	000	00000		000000		0000	
	blood cel	0000000000	00000000	0000000000	000000000000000000000000000000000000000		000000	000000		

Solution in R

```
> library(deSolve)
> retarded <- function(t, y, parms, tau) {</pre>
+ tlag <- t - tau
+ if (tlag <= 0)
  ylag <- 0.5
+
  else
+
    ylag <- lagvalue(tlag)</pre>
+
+
+
  dy <- 0.2 * ylag * 1/(1+ylag^10) - 0.1 * y
+
   list(dy = dy, ylag = ylag)
+ }
> yinit <- 0.5
> times <- seq(from = 0, to = 300, by = 0.1)
> yout1 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 10)
> yout2 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 20)
```

					Forcing	DDE		CPU	
000 00	000000	00 0000000000	00 00000000	000 0000000000	00000 000000000000000000000000000000000		000000	0000	
White	blood cel								

Solution in R

> plot(yout1, lwd = 2, main = "tau=10", ylab = "y", mfrow = c(2, 2), which = 1)
> plot(yout1[,-1], type = "l", lwd = 2, xlab = "y")
> plot(yout2, lwd = 2, main = "tau=20", ylab = "y", mfrow = NULL, which = 1)
> plot(yout2[,-1], type = "l", lwd = 2, xlab = "y")

Exercise: the Lemming model

A nice variant of the logistic model is the DDE lemming model:

$$y' = r \cdot y(1 - \frac{y(t - \tau)}{\kappa})$$
⁽²⁾

Use file examples/ddelemming.R.txt as a template to implement this model

- initial condition y(t = 0) = 19.001
- > parameter values r = 3.5, $\tau = 0.74$, K = 19
- history y(t) = 19 for t < 0
- ▶ Generate output for t in [0, 40].

[15] Shampine, L. and Thompson, S. (2001) Solving DDEs in MATLAB. App. Numer. Math. 37, 441-458

					Forcing	PDE		CPU	
000000		00	00	000	00000	0000000			
00000	000000000	00000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

Diffusion, advection and reaction: Partial differential equations (PDE) with ReacTran

Partial Differential Equations

Many second-order PDEs can be written as advection-diffusion problems:

$$\frac{\partial C}{\partial t} = -v \frac{\partial C}{\partial x} + D \frac{\partial^2 C}{\partial x^2} + f(t, x, C)$$

... same for 2-D and 3-D

Example: wave equation in 1-D

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{3}$$

can be written as:

$$\frac{du}{dt} = v$$

$$\frac{\partial v}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
(4)

Three packages for solving PDEs in R

ReacTran: methods for numerical approximation of PDEs

- tran.1D(C, C.up, C.down, D, v, ...)
- tran.2D, tran.3D

deSolve: general-purpose solvers for time-varying cases

- ode.1D(y, times, func, parms, nspec, dimens, method, names, ...)
- ode.2D, ode.3D

rootSolve: special solvers for time-invariant cases

- steady.1D(y, time, func, parms, nspec, dimens, method, names, ...)
- steady.2D, steady.3D

						Forcing	PDE		CPU	
							000000			
00	00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
1-D F	PDEs									

Numerical solution of the wave equation

```
librarv(ReacTran)
                                              http://desolve.r-forge.r-project.org
wave <- function (t, y, parms) {</pre>
  u <- y[1:N]
  v <- v[(N+1):(2*N)]
  du <- v
  dv \ll tran.1D(C = u, C.up = 0, C.down = 0, D = 1,
                dx = xqrid) dC
list(c(du. dv))
                                                Methods from ReacTran
}
xgrid <- setup.grid.1D(-100, 100, dx.1 = 0.2)
      <- xgrid$x.mid
х
    <- xgrid$N
N
uini <- exp(-0.2*x^2)
vini <- rep(0, N)
yini <- c(uini, vini)</pre>
                                                 Numerical method provided by the
times \langle - \text{ seg (from = 0, to = 50, by = 1)}
                                                        deSolve package
out <- ode.1D(yini, times, wave, parms, method = "adams",
               names = c("u", "v"), dimens = N)
```

```
image(out, grid = x)
```

					Forcing	PDE		CPU	
	000000	00	00 00000000	000 0000000000	00000 000000000000000000000000000000000	000000	00 000000	0000	
1-D P	DEs								

Plotting 1-D PDEs: matplot.1D

> outtime <- seq(from = 0, to = 50, by = 10)

> matplot.1D(out, which = "u", subset = time %in% outtime, grid = x,

х

						Forcing	PDE		CPU	
							000000			
		00000000000	0000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		
1-D PI	DEs									

Plotting 1-D PDEs: image

> image(out, which = "u", grid = x)

u

times

					Forcing	PDE	CPU	
	000000	00	00 00000000	000 0000000000	00000 000000000000000000000000000000000	000000	0000	
1-D P	DEs							

Plotting 1-D PDEs: persp plots

> image(out, which = "u", grid = x, method = "persp", border = NA,

+ col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60)

u

					Forcing	PDE	CPU	
000	00000	00	00	000	00000	000000	000	
1-D I								

Exercise: the Brusselator

Problem formulation

The Brusselator is a model for an auto-catalytic chemical reaction between two products, A and B, and producing also C and D in a number of intermediary steps.

$$\begin{array}{cccc} A & \xrightarrow{k_1} & X_1 \\ B + X_1 & \xrightarrow{k_2} & X_2 + C \\ 2X_1 + X_2 & \xrightarrow{k_3} & 3X_1 \\ X_1 & \xrightarrow{k_4} & D \end{array}$$

where the k_i are the reaction rates.

[7] Lefever, R., Nicolis, G. and Prigogine, I. (1967) On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium Journal of Chemical Physics 47, 1045–1047

				Forcing	PDE		CPU	
					000000			000
00 00000 00000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
1-D PDEs								

Exercise: Implement the Brusselator in 1-D

$$\frac{\partial X_1}{\partial t} = D_{X_1} \frac{\partial^2 X_1}{\partial x^2} + 1 + X_1^2 X_2 - 4X_1$$
$$\frac{\partial X_2}{\partial t} = D_{X_2} \frac{\partial^2 X_2}{\partial x^2} + 3X_1 - X_1^2 X_2$$

Tasks

- ▶ The grid *x* extends from 0 to 1, and consists of 50 cells.
- Initial conditions:

$$X_1(0) = 1 + sin(2 * \pi * x), X_2(0) = 3$$

- Generate output for $t = 0, 1, \dots 10$.
- Use file implementing the wave equation as a template: examples/wave.R.txt

2-D wave equation: Sine-Gordon

Problem formulation

The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial differential equation involving the sine of the dependent variable.

$$\frac{\partial^2 u}{\partial t^2} = D \frac{\partial^2 u}{\partial x^2} + D \frac{\partial^2 u}{\partial y^2} - \sin u$$
(5)

Rewritten as two first order differential equations:

$$\frac{\frac{du}{dt}}{\frac{\partial v}{\partial t}} = V \frac{\partial^2 u}{\partial x^2} + D \frac{\partial^2 u}{\partial y^2} - \sin u$$
(6)

					Forcing	PDE		CPU	
	000000	00	00	000	00000	000000		0000	
2=D		 00000000000	00000000	00000000000			000000		

2-D Sine-Gordon in R

grid:

```
> Nx <- Ny <- 100
> xgrid <- setup.grid.1D(-7, 7, N = Nx); x <- xgrid$x.mid
> ygrid <- setup.grid.1D(-7, 7, N = Ny); y <- ygrid$x.mid</pre>
```

derivative function:

> si	negordon2D <- function(t, C, parms) {
+	u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
+	<pre>v <- matrix(nrow = Nx, ncol = Ny, data = C[(Nx*Ny+1) : (2*Nx*Ny)])</pre>
+	dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0, C.y.up = 0, C.y.down = 0,
+	D.x = 1, $D.y = 1$, $dx = xgrid$, $dy = ygrid)$ \$dC - $sin(u)$
+	list(c(v, dv))
+ }	

initial conditions:

solution:

```
> out <- ode.2D (y = c(uini,vini), times = 0:3, parms = 0, func = sinegordon2D,
+ names = c("u", "v"), dimens = c(Nx, Ny), method = "ode45")
```

				Forcing	PDE		CPU	
00 00000 00000000	00000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
2-D PDEs								

Plotting 2-D PDEs: image plots

> image(out, which = "u", grid = list(x, y), mfrow = c(2,2), ask = FALSE)

				Forcing	PDE		CPU	
00 00000 00000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
2-D PDEs								

Plotting 2-D PDEs: persp plots

> image(out, which = "u", grid = list(x, y), method = "persp", border = NA,

- + col = "lightblue", box = FALSE, shade = 0.5, theta = 0, phi = 60,
- + mfrow = c(2,2), ask = FALSE)

M

u

u

u

u

					Forcing	PDE	CPU	
	00000	00	00 00000000	000	00000	000000	000	
2-D P	DEs							

Movie-like output of 2-D PDEs

			Fit		Forcing	PDE		CPU	
00 00000 0	0000000000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
2-D PDEs									

Exercise: Implement the Brusselator in 2-D

$$\begin{array}{rcl} \frac{\partial X_1}{\partial t} &=& D_{X_1} \frac{\partial^2 X_1}{\partial x^2} + D_{X_1} \frac{\partial^2 X_1}{\partial y^2} + 1 + X_1^2 X_2 - 4X_1 \\ \\ \frac{\partial X_2}{\partial t} &=& D_{X_2} \frac{\partial^2 X_1}{\partial x^2} + D_{X_2} \frac{\partial^2 X_1}{\partial y^2} + 3X_1 - X_1^2 X_2 \end{array}$$

Tasks

- ▶ The grids x and y extend from 0 to 1, and consist of 50 cells.
- Parameter settings: diffusion coefficient:

$$D_{X_1} = 2; D_{X_2} = 8 * D_{X_1}$$

- lnitial condition for X_1 , X_2 : random numbers inbetween 0 and 1.
- Generate output for t = 0, 1, ... 8
- Use the file implementing the Sine-Gordon equation as a template: examples/sinegordon.R.txt

Differential-Algebraic Equations

Solver overview, examples

Two solvers for DAEs in R-package deSolve:

daspk

- a backward differentiation formula (BDF)
- DAEs of index 1 only
- Can solve DAEs in form My' = f(x, y) and F(x, y, y') = 0

radau

- an implicit Runge-Kutta formula (BDF)
- DAEs of index \leq 3
- Can solve DAEs in form My' = f(x, y) only

... more in package deTestSet

 Brenan, K. E., Campbell, S. L. and Petzold, L. R. (1996) Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM Classics in Applied Mathematics.

[4] Hairer, E. and Wanner, G. (2010) Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition, Springer-Verlag.

^{▶ ...}

Options of solver functions

```
daspk (y, times, func = NULL, parms, dy, res, mass, ...)
radau (y, times, func, parms, nind, mass, ...)
```

- func and mass: for My' = f(x, y)
- res: for F(x, y, y') = 0
- ▶ nind: number of variables of index 1, 2, and 3 ⇒ equations should be sorted accordingly
- radau does not require specification of (consistent) initial derivatives (dy)

							Forcing		DAE	CPU	
	S	00000	0000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000	000000	000000		
E×	amp	oles									

Implicit DAE: Robertson problem

Problem formulation

A classic problem to test stiff ODE/DAE solvers, given by Robertson (1966), written as a DAE (of index 1):

$$\begin{array}{rcl} y_1' = & -0.04y_1 + 10^4y_2y_3 \\ y_2' = & 0.04y_1 - 10^4y_2y_3 - 3e^7y_2^2 \\ 1 = & y_1 + y_2 + y_3 \end{array} \Rightarrow \begin{array}{rcl} 0 = & -y_1' - 0.04y_1 + 10^4y_2y_3 \\ 0 = & -y_2' + 0.04y_1 - 10^4y_2y_3 - 3e^7y_2^2 \\ 0 = & -1 + y_1 + y_2 + y_3 \end{array}$$

The third equation is to conserve the total concentration of y_1, y_2, y_3

- initial conditions: $y_1 = 1, y_2 = 0, y_3 = 0.$
- output for $t = 10^{[0, 0.1, 0.2, \dots 10]}$
- solve with daspk

[12] Robertson, H. H. (1966) The solution of a set of reaction rate equations. In Walsh, J. (ed.) Numerical Analysis: An Introduction,

Academic Press, 178-182

					Forcing		DAE	CPU	
	000000	00	00 00000000	000	00000	000000		0000	
Exam	ples								

Robertson DAE in R

residual function (4 mandatory arguments):

```
> RobertsonDAE <- function(t, y, dy, parms) {
+
+ res1 <- -dy[1] - 0.04*y[1] + 1e4*y[2]*y[3]
+ res2 <- -dy[2] + 0.04*y[1] - 1e4*y[2]*y[3] - 3e7* y[2]^2
+ res3 <- -1 + y[1] + y[2] + y[3]
+
+ list(c(res1, res2, res3))
+ }</pre>
```

initial conditions (values, derivatives):

```
> yini <- c(y1 = 1.0, y2 = 0, y3 = 0)
> dyini <- rep(0, 3)  # rough guess often good enough</pre>
```

solution:

```
> times <- 10^(seq(from = 0, to = 10, by = 0.1))
> out <- daspk(y = yini, dy = dyini, res = RobertsonDAE, parms = NULL,
+ times = times)</pre>
```

				Forcing		DAE	CPU End
	00	00 00000000	000		000000		0000 00 0
Examples							

Plotting

> plot(out, log = "x", col = "darkblue", lwd = 2, mfrow=c(1,3))

The pendulum

Problem formulation, an index 3 DAE

Original equations:

M.y' = f(x,y)

▶ initial conditions: $x = 1, y = 0, u = 0, v = 1, \lambda = 1$

- > x and y variables of index 1, u, v of index 2, λ of index 3
- solve in [0,10]

					Forcing		DAE	CPU	
	000000	00	00 00000000	000	00000	000000		0000	
Exam	nples								

Pendulum problem in R

derivative function:

```
> pendulum <- function (t, Y, parms) {
    with (as.list(Y).
+
      list(c(u,
+
+
              v,
+
             -lam * x.
              -lam * y - 9.8,
+
             x^2 + v^2 - 1
+
+
          ))
+
   )
+ }
```

mass matrix and index vector:

```
> M <- diag(nrow = 5)
> M[5, 5] <- 0
> index <- c(2, 2, 1)
```

initial conditions:

```
> yini <- c(x = 1, y = 0, u = 0, v = 1, lam = 1)
```

solution :

```
> times <- seq(from = 0, to = 10, by = 0.01)
> out <- radau (y = yini, func = pendulum, parms = NULL,
+ times = times, mass = M, nind = index)</pre>
```

					Forcing		DAE	CPU	
00		00	00	000	00000	000000		000	
Exa	nples							-	

Plotting

0

-1

-2

-3

0 2 4

time

1.0

						Forcing		CPU	
	000000		00 0000000000	00 00000000	000 0000000000	00000 00000000000000000	000000	000 0	000
Matri	× formulat	ion of models							

Speeding up: Matrices and compiled code

Methods for speeding up

- 1. Use matrices,
- 2. Implement essential parts in compiled code (Fortran, C),
- 3. Implement the full method in compiled code.

Formulating a model with matrices and vectors can lead to a considerable speed gain – and compact code – while retaining the full flexibility of R. The use of compiled code saves even more CPU time at the cost of a higher development effort.

Use of matrices

A Lotka-Volterra model with 4 species

```
model <- function(t, n, parms) {</pre>
>
      with(as.list(c(n, parms)), {
+
        dn1 <- r1 * n1 - a13 * n1 * n3
+
        dn2 < -r2 * n2 - a24 * n2 * n4
+
        dn3 <- a13 * n1 * n3 - r3 * n3
+
        dn4 <- a24 * n2 * n4 - r4 * n4
+
      return(list(c(dn1, dn2, dn3, dn4)))
+
+
    })
+ }
> parms <- c(r1 = 0.1, r2 = 0.1, r3 = 0.1, r4 = 0.1, a13 = 0.2, a24 = 0.1)
> times = seq(from = 0, to = 500, by = 0.1)
> n0 = c(n1 = 1, n2 = 1, n3 = 2, n4 = 2)
> system.time(out <- ode(n0, times, model, parms))
   user
         system elapsed
   0.43
           0.00
                   0.42
```

Source: examples/lv-plain-or-matrix.R.txt

Use of matrices

A Lotka-Volterra model with 4 species

```
> model <- function(t, n, parms) {</pre>
    with(parms, {
+
     dn < -r * n + n * (A \% \% n)
+
     return(list(c(dn)))
+
   7)
+
+ }
> parms <- list(
   r = c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1).
+
   A = matrix(c(0.0, 0.0, -0.2, 0.0, \# prey 1)
+
+
                0.0, 0.0, 0.0, -0.1, # prey 2
                0.2, 0.0, 0.0, 0.0, # predator 1; eats prey 1
+
                0.0, 0.1, 0.0, 0.0), # predator 2; eats prev 2
+
                nrow = 4, ncol = 4, byrow = TRUE)
+
+ )
> system.time(out <- ode(n0, times, model, parms))
         system elapsed
   user
   0.25
          0.00
                   0.25
```

Source: examples/lv-plain-or-matrix.R.txt

							Forcing		CPU	
			0000 000000000	00	00	000	00000	000000	000	000
Mat	rix forn	nulati	on of models							

Results

- > plot(out) will show the results.
- Note that the "plain" version has only 1 to 1 connections, but the matrix model is already full connected (with most connections are zero). The comparison is insofar unfair that the matrix version (despite faster execution) is more powerful.
- Exercise: Create a fully connected model in the plain version for a fair comparison.
- A parameter example (e.g. for weak coupling) can be found on: http: //tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html

Using compiled code

All solvers of deSolve

> allow direct communication between solvers and a compiled model.

See vignette ("compiledCode")

Principle

- Implement core model (and only this) in C or Fortran,
- ▶ Use data handling, storage and plotting facilities of R.

examples/compiled_lorenz/compiledcode.svg

[16] Soetaert, K., Petzoldt, T. and Setzer, R. (2009) R-package deSolve, Writing Code in Compiled Languages.

				Forcing			CPU	End
00000	00	00	000	00000	000000	00	0000	

Thank you!

More Info: http://desolve.r-forge.r-project.org

						Forcing			CPU	End
000		0000	00	00	000	00000	000000		000	000
Fina	000	000000000	000000000000000000000000000000000000000	00000000	000000000000	000000000000000000000000000000000000000	000000	000000		

Citation

A lot of effort went in creating this software; please cite it when using it.

- deSolve: [22], rootSolve [21], ReacTran [18],
- Some complex examples can be found in [20],
- A framework to fit differential equation models to data is FME [19],
- ... and don't forget the authors of the original algorithms [5, 10, 2]!

Acknowledgments

- None of this would be possible without the splendid work of the R Core Team [11],
- This presentation was created with Sweave [8],
- Creation of the packages made use of R-Forge [23].

											CPU	End
												00
	00	00000	000000000	0000000000	00000000	0000000000	000000000000000000000000000000000000000		000000	000000		
Finally												

Bibliography I

K E Brenan, S L Campbell, and L R Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM Classics in Applied Mathematics, 1996.

- [2] P N Brown, G D Byrne, and A C Hindmarsh. Vode, a variable-coefficient ode solver. SIAM Journal on Scientific and Statistical Computing, 10:1038–1051, 1989.
- [3] E Hairer, S. P. Norsett, and G Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2009.
- [4] E Hairer and G Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2010.
- [5] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. Stepleman, editor, Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation, pages 55–64. IMACS / North-Holland, Amsterdam, 1983.

 [5] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2003.

- R. Lefever, G. Nicolis, and I. Prigogine. On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium. Journal of Chemical Physics, 47:1045–1047, 1967.
- [8] Friedrich Leisch.

Dynamic generation of statistical reports using literate data analysis.

In W. Hardle and B. Rönz, editors, COMPSTAT 2002 – Proceedings in Computational Statistics, pages 575–580, Heidelberg, 2002. Physica-Verlag.

						Forcing			CPU	End
	000000		00	00	000	00000	000000		0000	00
Final		0000000000	0000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

Bibliography II

- M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. *Science*, 197:287–289, 1977.
- [10] Linda R. Petzold. Automatic section of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4:136–148, 1983.
- [11] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.
- H. H. Robertson. The solution of a set of reaction rate equations. In J. Walsh, editor, Numerical Analysis: An Introduction, pages 178–182, Academic Press, London, 1966.
- O.E. Rossler. An equation for continous chaos. Physics Letters A, 57 (5):397–398, 1976.
- [14] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB. Cambridge University Press, Cambridge, 2003.
- [15] L.F Shampine and S. Thompson. Solving ddes in matlab. App. Numer. Math., 37:441–458, 2001.
- [16] K Soetaert, T Petzoldt, and RW Setzer. *R-package deSolve, Writing Code in Compiled Languages*, 2009. package vignette.
- [17] Karline Soetaert. rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations, 2009. R package version 1.6.

						Forcing			CPU	End
	200000		00	00	000	00000	000000		0000	00
Finally		000000000	000000000000000000000000000000000000000	00000000	00000000000	000000000000000000000000000000000000000	000000	000000		

Bibliography III

[18] Karline Soetaert and Filip Meysman. Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software r. Environmental Modelling & Software, 32:49-60, 2012. [19] Karline Soetaert and Thomas Petzoldt. Inverse modelling, sensitivity and monte carlo analysis in R using package FME. Journal of Statistical Software, 33(3):1-28, 2010. [20] Karline Soetaert and Thomas Petzoldt. Solving ODEs, DAEs, DDEs and PDEs in R. Journal of Numerical Analysis, Industrial and Applied Mathematics, in press, 2011. [21] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Solving Differential Equations in R. The R Journal, 2(2):5-15, December 2010. [22] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer, Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33(9):1-25, 2010. [23] Stefan Theußl and Achim Zeileis. Collaborative Software Development Using R-Forge. The R Journal, 1(1):9-14, May 2009. [24] B. van der Pol and J. van der Mark. Frequency demultiplication. Nature, 120:363-364, 1927.