Differential Equations in R

Tutorial useR Conference Los Angeles 2014

Karline Soetaert, \& Thomas Petzoldt

Centre for Estuarine and Marine Ecology (CEME)
Royal Netherlands Institute for Sea Research (NIOZ
Yerseke, The Netherlands
karline.soetaert@nioz.nl

Technische Universität Dresden
Faculty of Environmental Sciences
Institute of Hydrobiology
01062 Dresden
Germany
thomas.petzoldt@tu-dresden.de

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,
- Fitting models to data,

Outline

- How to specify a model
- An overview of solver functions
- Plotting, scenario comparison,
- Fitting models to data,
- Forcing functions and events
- Partial differential equations with ReacTran
- Speeding up

Download R from the CRAN website: http://cran.r-project.org/

Install a suitable editor

e.g. RStudio

Packages can be installed from within R or Rstudio:

R R Console	
File Edit Misc	Packages Windows Help
$>$	Load package...
$>$	Set CRAN mirror...
$>$	Select repositories...
$>$	Install package(s)...
$>$	Update packages...
$>$	Install package(s) from local zip files...

... or via the command line
install.packages("deSolve", dependencies = TRUE)

Several packages deal with differential equations

- deSolve: main integration package
- rootSolve: steady-state solver
- bvpSolve: boundary value problem solvers
- deTestSet: ODE and DAE test set + additional solvers
- ReacTran: partial differential equations
- simecol: interactive environment for implementing models

All packages have at least one author in common \rightarrow consistent interface.

More, see CRAN Task View: Differential Equations

Getting help

> library(deSolve)
 > ?deSolve

- opens the main help page containing
- a short explanation
- a link to the main manual (vignette) "Solving Initial Value Differential Equations in R"
- links to additional manuals, papers and online resources
- references
- a first example
- all our packages have such a ? <packagename> help file.

```
> library(deSolve)
> example(deSolve)
```


Z

Let's begin ...

Model specification

Logistic growth

Differential equation

$$
\frac{d N}{d t}=r \cdot N \cdot\left(1-\frac{N}{K}\right)
$$

Analytical solution

$$
N_{t}=\frac{K N_{0} e^{r t}}{K+N_{0}\left(e^{r t}-1\right)}
$$

R implementation

> logistic <- function(t, r, K, NO) \{
$+K * N O * \exp (r * t) /(K+N O *(\exp (r * t)-1))$
$+\}$
$>\operatorname{plot}(0: 100, \operatorname{logistic}(t=0: 100, r=0.1, K=10, N O=0.1))$

Numerical simulation in R

Why numerical solutions?

- Not all systems have an analytical solution,
- Numerical solutions allow discrete forcings, events, ...

Why R?

- If standard tool for statistics, why Prog $\$ \$ \$$ for dynamic simulations?
- The community and the packages \rightarrow useR!2014

Numerical solution of the logistic equation

```
                                    http://desolve.r-forge.r-project.org
library(deSolve)
model <- function (time, y, parms) {
    with(as.list(c(y, parms)), {
        dN <- r*N* (1 - N/K) ए Differential equation
        1ist(dN)
    })
}
y <- c(N = 0.1)
parms <- c(r = 0.1, K = 10)
times <- seq(0, 100, 1)
out <- ode(y, times, model, parms)
plot(out)
    Numerical methods provided by the
                    deSolve package
```


Inspecting output

- Print to screen
> head(out, $n=4$)
time
N
[1,] 00.1000000
[2,] 10.1104022
[3,] 20.1218708
[4,] 30.1345160
- Summary
> summary (out)

	N
Min.	0.100000
1st Qu.	1.096000
Median	5.999000
Mean	5.396000
3rd Qu.	9.481000
Max.	9.955000
N	101.000000
sd	3.902511

- Plotting
> plot(out, main = "logistic growth", lwd = 2)
logistic growth

> diagnostics(out)

lsoda return code
return code (idid) $=2$
Integration was successful.

INTEGER values

1 The return code : 2
2 The number of steps taken for the problem so far: 105
3 The number of function evaluations for the problem so far: 211
5 The method order last used (successfully): 5
6 The order of the method to be attempted on the next step: 5
7 If return flag $=-4,-5$: the largest component in error vector 0
8 The length of the real work array actually required: 36
9 The length of the integer work array actually required: 21
14 The number of Jacobian evaluations and LU decompositions so far: 0
15 The method indicator for the last succesful step,
$1=a d a m s$ (nonstiff), $2=$ bdf (stiff): 1
16 The current method indicator to be attempted on the next step, $1=$ adams (nonstiff), $2=$ bdf (stiff): 1

Coupled ODEs: the rigidODE problem

Problem

- Euler equations of a rigid body without external forces.
- Three dependent variables $\left(y_{1}, y_{2}, y_{3}\right)$, the coordinates of the rotation vector,
- I_{1}, I_{2}, I_{3} are the principal moments of inertia.
[3] E. Hairer, S. P. Norsett, and G Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition. Springer-Verlag, Heidelberg, 2009

Coupled ODEs: the rigidODE equations

Differential equation

$$
\begin{aligned}
y_{1}^{\prime} & =\left(I_{2}-l_{3}\right) / l_{1} \cdot y_{2} y_{3} \\
y_{2}^{\prime} & =\left(l_{3}-l_{1}\right) / l_{2} \cdot y_{1} y_{3} \\
y_{3}^{\prime} & =\left(I_{1}-l_{2}\right) / l_{3} \cdot y_{1} y_{2}
\end{aligned}
$$

Parameters

$$
I_{1}=0.5, I_{2}=2, I_{3}=3
$$

Initial conditions

$$
y_{1}(0)=1, y_{2}(0)=0, y_{3}(0)=0.9
$$

Coupled ODEs: the rigidODE problem

R implementation

> library(deSolve)
> rigidode <- function(t, y, parms) \{
$+d y 1<-2 \quad * y[2] * y[3]$
$+d y 2<-1.25 * y[1] * y[3]$
$+d y 3<--0.5 * y[1] * y[2]$
$+\quad \operatorname{list}(c(d y 1$, dy2, dy3))
$+\}$
> yini <- $c(y 1=1, y 2=0, y 3=0.9)$
$>$ times <- seq (from $=0$, to $=20$, by $=0.01$)
> out <- ode (times = times, y = yini, func = rigidode, parms = NULL)
$>$ head (out, $n=3$)
time y1 y2 y3
[1,] 0.001 .00000000 .000000000 .9000000
[2,] 0.010 .99989880 .011249250 .8999719
$[3] \quad 0.02 \quad$,

Coupled equations

Coupled ODEs: plotting the rigidODE problem

Exercise

The Rössler equations

$$
\begin{aligned}
y_{1}^{\prime} & =-y_{2}-y_{3} \\
y_{2}^{\prime} & =y_{1}+a \cdot y_{2} \\
y_{3}^{\prime} & =b+y_{3} \cdot\left(y_{1}-c\right)
\end{aligned}
$$

Initial Conditions

$$
y_{1}=1, y_{2}=1, y_{3}=1
$$

Parameters

$$
a=0.2, b=0.2, c=5
$$

Tasks

- Solve the ODEs on the interval $[0,100]$
- Produce a 3-D phase-plane plot
- Use file examples/rigidODE.R.txt as a template
[13] O.E. Rössler. An equation for continous chaos. Physics Letters A, 57 (5):397-398, 1976.

Solvers ...

Solver overview, stiffness, accuracy

Integration methods: package deSolve [22]

Solver overview: package deSolve

Solver	Notes	素	$\underset{\substack{11}}{\substack{\text { coser }}}$	$\begin{aligned} & \underset{N}{太} \\ & \underset{N}{+11} \\ & \underset{\sum}{\lambda} \end{aligned}$	$\frac{11}{2}$	¢			믗
Isoda/lsodar	automatic method selection	auto	X			X	X	X	
Isode	bdf, adams, ...	user defined	X			X	X	X	
Isodes	sparse Jacobian	yes	X			X	X	X	
vode	bdf, adams, ...	user defined	X				X	X	
zvode	complex numbers	user defined	X				X	X	
daspk	DAE solver	yes	X	X	X		X	X	
radau	DAE; implicit RK	yes	X	X		X	X	X	
rk, rk4, euler	euler, ode23, ode45, ... rkMethod	no	X				X		X
iteration	returns state at t+dt	no	X				X		X

- ode, ode.band, ode.1D, ode.2D, ode.3D: top level functions (wrappers)
- red: functionality added by us

Options of solver functions

Top level function

```
> ode(y, times, func, parms,
+ method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
+ "euler", "rk4", "ode23", "ode45", "radau",
+ "bdf", "bdf_d", "adams", "impAdams", "impAdams_d",
+ "iteration"), ...)
```


Workhorse function: the individual solver

```
> lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
+ jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
+ verbose = FALSE, nroot = 0, tcrit = NULL,
+ hmin = O, hmax = NULL, hini = 0, ynames = TRUE,
+ maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
+ maxsteps = 5000, dllname = NULL, initfunc = dllname,
+ initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
+ outnames = NULL, forcings = NULL, initforc = NULL,
+ fcontrol = NULL, events = NULL, lags = NULL,...)
```


Arghhh, which solver and which options???

Problem type?

- ODE: use ode,
- DDE: use dede,
- DAE: daspk or radau,
- PDE: ode.1D, ode.2D, ode.3D,
... others for specific purposes, e.g. root finding, difference equations (euler, iteration) or just to have a comprehensive solver suite (rk4, ode45).

Stiffness

- default solver lsoda selects method automatically,
- adams or bdf may speed up a little bit if degree of stiffness is known,
- vode or radau may help in difficult situations.

Solvers for stiff systems

Stiffness

- Difficult to give a precise definition.
\approx system where some components change more rapidly than others.

Sometimes difficult to solve:

- solution can be numerically unstable,
- may require very small time steps (slow!),
- deSolve contains solvers that are suitable for stiff systems,

But: "stiff solvers" slightly less efficient for "well behaving" systems.

- Good news: lsoda selects automatically between stiff solver (bdf) and nonstiff method (adams).

Van der Pol equation

Oscillating behavior of electrical circuits containing tubes [24]. $2^{\text {nd }}$ order ODE

$$
y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y=0
$$

... must be transformed into two $1^{\text {st }}$ order equations

$$
\begin{aligned}
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =\mu \cdot\left(1-y_{1}^{2}\right) \cdot y_{2}-y_{1}
\end{aligned}
$$

- Initial values for state variables at $t=0: y_{1_{(t=0)}}=2, y_{2_{(t=0)}}=0$
- One parameter: $\mu=$ large \rightarrow stiff system; $\mu=$ small \rightarrow non-stiff.

Model implementation

```
> library(deSolve)
> vdpol <- function (t, y, mu) {
+ list(c(
+ y[2],
+ mu * (1 - y[1]^2) * y[2] - y[1]
+ ))
+ }
> yini <- c(y1 = 2, y2 = 0)
> stiff <- ode(y = yini, func = vdpol, times = 0:3000, parms = 1000)
> nonstiff <- ode(y = yini, func = vdpol, times = seq(0, 30, 0.01), parms = 1)
> head(stiff, n = 5)
\begin{tabular}{lrrr} 
& time & y 1 & y 2 \\
{\([1]\),} & 0 & 2.000000 & 0.0000000000 \\
{\([2]\),} & 1 & 1.999333 & -0.0006670373 \\
{\([3]\),} & 2 & 1.998666 & -0.0006674088 \\
{\([4]\),} & 3 & 1.997998 & -0.0006677807 \\
{\([5]\),} & 4 & 1.997330 & -0.0006681535
\end{tabular}
```


Interactive exercise

- The following link opens in a web browser. It requires a recent version of Firefox or Chrome, ideally in full-screen mode. Use Cursor keys for slide transition:
- Left cursor guides you through the full presentation.
- Mouse and mouse wheel for full-screen panning and zoom.
- Pos1 brings you back to the first slide.
- examples/vanderpol.svg
- The following opens the code as text file for life demonstrations in R
- examples/vanderpol.R.txt

Plotting

Stiff solution

> plot(stiff, type = "l", which = "y1",
$+\quad l w d=2, y l a b=" y "$,
$+\quad$ main $=$ "IVP ODE, stiff")

Nonstiff solution

> plot(nonstiff, type = "l", which = "y1",
$+\quad l w d=2$, ylab $=" y "$,
$+\quad$ main $=$ "IVP ODE, nonstiff")

Default solver, 1soda:

```
> system.time(
+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000)
+ )
    user system elapsed
    0.08 0.00 0.08
> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1)
+ )
    user system elapsed
    0.08 0.00 0.08
```

Implicit solver, bdf:

```
> system.time(
+ stiff <- ode(yini, 0:3000, vdpol, parms = 1000, method = "bdf")
+ )
    user system elapsed
    0.06 0.00 0.07
> system.time(
+ nonstiff <- ode(yini, seq(0, 30, by = 0.01), vdpol, parms = 1, method = "bdf")
+ )
    user system elapsed
    0.05 0.00 0.04
```

\Rightarrow Now use other solvers, e.g. adams, ode45, radau.

Results

Timing results; your computer may be faster:

solver	non-stiff	stiff
ode23	0.37	271.19
Isoda	0.26	0.23
adams	0.13	616.13
bdf	0.15	0.22
radau	0.53	0.72

Comparison of solvers for a stiff and a non-stiff parametrisation of the van der Pol equation (time in seconds, mean values of ten simulations on my old AMD X2 3000 CPU).

Accuracy and stability

- Options atol and rtol specify accuracy,
- Stability can be influenced by specifying hmax and maxsteps.

Accuracy and stability - ctd

atol (default 10^{-6}) defines absolute threshold,

- select appropriate value, depending of the size of your state variables,
\Rightarrow may be between $\approx 10^{-300}$ (or even zero) and $\approx 10^{300}$.
rtol (default 10^{-6}) defines relative threshold,
- It makes no sense to specify values $<10^{-15}$ because of the limited numerical resolution of double precision arithmetics (≈ 16 digits).
hmax is automatically set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. Sometimes, it may be set to a smaller value to improve robustness of a simulation.
hmin should normally not be changed.
Example: Setting rtol and atol: examples/PCmod_atol_0.R.txt

Plotting, scenario comparison, observations

Plotting and printing

Methods for plotting and extracting data in deSolve

- subset extracts specific variables that meet certain constraints.
- plot, hist create one plot per variable, in a number of panels
- image for plotting 1-D, 2-D models
- plot.1D and matplot.1D for plotting 1-D outputs
- ?plot. deSolve opens the main help file
rootSolve has similar functions
- subset extracts specific variables that meet certain constraints.
- plot for 1-D model outputs, image for plotting 2-D, 3-D model outputs
- ?plot.steady1D opens the main help file

The Lorenz equations

- chaotic dynamic system of ordinary differential equations
- three variables, X, Y and Z represent idealized behavior of the earth's atmosphere.

```
> chaos <- function(t, state, parameters) \{
\(+\quad\) with(as.list(c(state)), \{
\(+\quad d x \quad<--8 / 3 * x+y * z\)
\(+\quad d y \quad<-10 *(y-z)\)
\(+\quad d z \quad<-x * y+28 * y-z\)
\(+\quad \operatorname{list}(c(d x, d y, d z))\)
+ \})
\(+\}\)
\(>\) yini <- \(c(x=1, y=1, z=1)\)
> yini2 <- yini + c(1e-6, 0, 0)
\(>\) times <- seq(0, 30, 0.01)
> out <- ode (y = yini, times = times, func = chaos, parms = 0)
> out2 <- ode (y = yini2, times = times, func = chaos, parms = 0)
```


Plotting multiple scenarios

- The default for plotting one or more objects is a line plot
- We can plot as many objects of class deSolve as we want
- By default different outputs get different colors and line types
> plot(out, out2, lwd = 2, lty = 1)

Changing the panel arrangement

- Default: Automatic number of panels per page up to 3×3
- Use mfrow() or mfcol() to overrule

$$
>\text { plot(out, out2, lwd }=2, \text { lty }=1 \text {, mfrow }=c(1,3))
$$

- Important: upon returning the default mfrow is NOT restored.

Plotting style

- We can change the style of the dataseries (col, lty, ...)
- will be effective for all figures
- We can change individual figure settings (title, labels, ...)
- vector input can be specified by a list; NULL will select the default
> plot(out, out2, col = c("blue", "orange"),
+ main = c("Xvalue", "Yvalue", "Zvalue"),
$+\quad x \lim =\operatorname{list}(c(20,30), c(25,30), N U L L)$, mfrow $=c(1,3))$

R's default plot ...

is used if we extract single colums from the deSolve object

$$
\begin{aligned}
& >\text { plot (out [,"x"], out [,"y"], pch = ".", main = "Lorenz butterfly", } \\
& +\quad x l a b=" x ", y l a b=" y ")
\end{aligned}
$$

Lorenz butterfly

Use deSolve's subset ...

... to select values that meet certain conditions
$>X Y<-$ subset (out, select = c ("x", "y"), subset $=y<10 \& x<40)$
> plot (XY, main = "Lorenz butterfly", xlab = "x", ylab = "y", pch = ".

Lorenz butterfly

Plotting multiple scenarios ...

. . . is simple if number of outputs is known

```
> derivs <- function(t, y, parms)
+ with (as.list(parms), list(r * y * (1 - y/K)))
> times <- seq(from = 0, to = 30, by = 0.1)
> out <- ode(y = c(y = 2), times, derivs, parms = c(r = 1, K = 10))
> out2 <- ode(y = c(y = 12), times, derivs, parms = c(r = 1, K = 10))
> plot(out, out2, lwd = 2)
```

y

Plotting multiple scenarios ...

... with many or an unknown number of outputs in a list

```
> outlist <- list()
> plist <- cbind(r = runif(30, min = 0.1, max = 5),
+ K = runif(30, min = 8, max = 15))
> for (i in 1:nrow(plist))
+ outlist[[i]] <- ode(y = c(y = 2), times, derivs, parms = plist[i,])
> plot(out, outlist)
```

y

Observed data

Arguments obs and obspar are used to add observed data
> obs2 <- data.frame (time $=c(1,5,10,20,25)$,
$+\quad y=c(12,10,8,9,10))$
> plot(out, out2, obs = obs2,

+ obspar = list (col = "red", pch = 18, cex = 2))

Observed data

A list of observed data is allowed
> obs2 <- data.frame (time $=c(1,5,10,20,25), \mathrm{y}=c(12,10,8,9,10))$
$>$ obs1 <- data.frame (time $=c(1,5,10,20,25), \mathrm{y}=c(1,6,8,9,10))$
> plot(out, out2, col = c("blue", "red"), lwd = 2,
$+\quad$ obs = list(obs1, obs2),
$+\quad$ obspar $=$ list (col = c("blue", "red"), pch = 18, cex = 2))

Fitting models to data

Fitting models

Given:

- a dynamic model
- data for one or more state variables

Wanted:

- a set of parameters that fits the data

Approach \rightarrow package FME:

1. try an initial guess for the parameters
2. define cost function (e.g. least squares) with modCost()
3. fit the model with modFit
4. plot model and data

Pharmacokinetic two compartment model

- a substance accumulated in the fat and eliminated by the liver
- two state variables, concentration in the fat C_{F} and in the liver C_{L}
- 3 parameters: transport ($k_{F L}, k_{L F}$) and elimination (k_{e})

$$
\begin{aligned}
& \frac{d C_{L}}{d t}=k_{F L} C_{F}-k_{L F} C_{L}-k_{e} C_{L} \\
& \frac{d C_{F}}{d t}=k_{L F} C_{L}-k_{F L} C_{F}
\end{aligned}
$$

```
> library("FME")
> twocomp <- function (time, y, parms, ...) {
+ with(as.list(c(parms, y)), {
+ dCL <- kFL * CF - kLF *CL - ke * CL # concentration in liver
+ dCF <- kLF * CL - kFL * CF # concentration in fat
+ list(c(dCL, dCF))
+ })
+ }
```


Data and initial guess

```
> dat <- data.frame(
+ time = seq(0, 28, 4),
+ CL = c(1.31, 0.61, 0.49, 0.41, 0.20, 0.12, 0.16, 0.21),
+ CF = c(1e-03, 0.041, 0.05, 0.039, 0.031, 0.025, 0.017, 0.012)
+ )
> parms <- c(ke = 0.2, kFL = 0.1, kLF = 0.05)
> times <- seq(0, 40, length=200)
> y0 <- c(CL = 1,CF = 0)
> out1 <- ode(y0, times, twocomp, parms)
> plot(out1, obs = dat)
```


Define cost function (least squares):

```
> cost <- function(p) {
+ out <- ode(y0, times, twocomp, p)
+ modCost(out, dat, weight = "none") # try weight = "std" or "mean"
+ }
```

Note:

- naming of oservation and simulation data must be identical
- data may be given in cross table (wide) or data base format (long)
- different scaling and weighting options
- optional: sequential build-up of cost function

Fit the model:

> parms <- c $(k e=0.2, \quad k F L=0.1, \quad k L F=0.05)$
$>$ fit <- modFit(f = cost, $p=$ parms)
> summary (fit)
Parameters:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

ke	0.08546	0.01256	6.803	$1.26 \mathrm{e}-05$	***
kFL	0.67293	4.66953	0.144	0.888	
kLF	0.06970	0.49269	0.141	0.890	

Signif. codes: $0{ }^{\prime} * * *^{\prime} 0.001{ }^{\prime} * *^{\prime} 0.01{ }^{\prime} *^{\prime} 0.05$ '.' $0.1^{\prime} 1$

Residual standard error: 0.09723 on 13 degrees of freedom

Parameter correlation:
ke kFL kLF
ke 1.00000 .46430 .4554
kFL 0.46431 .00000 .9932
kLF 0.45540 .99321 .0000

Compare output with data

```
> out1 <- ode(y0, times, twocomp, parms)
> out2 <- ode(y0, times, twocomp, coef(fit))
> plot(out1, out2, obs=dat, obspar=list(pch=16, col="red"))
```


Fit parameters and initial values

```
> cost <- function(p, data, ...) {
+ yy<- p[c("CL", "CF")]
+ pp <- p[c("ke", "kFL", "kLF")]
+ out <- ode(yy, times, twocomp, pp)
+ modCost(out, data, ...)
+ }
```

Good start parameters can be very important:
> \#parms <- c (CL = 1.2, CF = 0.0, $k e=0.2, ~ k F L=0.1, k L F=0.05)$
$>$ parms <- c (CL = 1.2, CF = 0.001, ke = 0.2, kFL = 0.1, kLF = 0.05)
> fit <- modFit(f = cost, p = parms, data = dat, weight = "std",
$+\quad$ lower $=\operatorname{rep}(0,5)$, upper $=c(2,2,1,1,1)$, method $=$ "Marq")

Fit parameters and initial values

> y0 <- coef(fit) [c("CL", "CF")]
> pp <- coef (fit) [c("ke", "kFL", "kLF")]
> out3 <- ode (yO, times, twocomp, pp)
> plot(out1, out2, out3, obs=dat, col=c("grey", "blue", "red"), lty = 1

> summary(fit)
Parameters:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
CL 1.2301394 0.0721467 17.051 2.94e-09 ***
$\begin{array}{lllll}\text { CF } & 0.0006821 & 0.0033118 & 0.206 & 0.841\end{array}$
ke $0.1073348 \quad 0.0113231 \quad 9.4791 .26 \mathrm{e}-06$ ***
kFL $0.1770370 \quad 0.0289392 \quad 6.118$ 7.55e-05 ***
kLF $0.0153857 \quad 0.0020289 \quad 7.5831 .08 \mathrm{e}-05$ ***

Signif. codes: $0{ }^{\prime} * * *^{\prime} 0.001{ }^{\prime} * *^{\prime} 0.01{ }^{\prime} *^{\prime} 0.05$ '.' $0.1^{\prime} 1$

Residual standard error: 0.2032 on 11 degrees of freedom

Parameter correlation:

	CL	CF	ke	kFL	kLF
CL	1.000000	0.003152	0.54175	-0.3837	-0.5494
CF	0.003152	1.000000	0.04449	-0.2229	-0.3529
ke	0.541751	0.044489	1.00000	-0.7083	-0.4287
kFL	-0.383735	-0.222888	-0.70830	1.0000	0.8340
kLF	-0.549433	-0.352886	-0.42874	0.8340	1.0000

Steady-state

Solver overview, 1-D, 2-D, 3-D

Two packages for Steady-state solutions:

ReacTran: methods for numerical approximation of PDEs

- tran.1D(C, C.up, C.down, D, v, ...)
- tran.2D, tran.3D
rootSolve: special solvers for roots
- steady for 0-D models
- steady.1D, steady.2D, steady.3D for 1-D, 2-D, 3-D models
[18] Soetaert, K. and Meysman, F. (2012) Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software
R Environmental Modelling and Software 32, 49-60
[21] Soetaert, K., Petzoldt, T. and Setzer, R. W. (2010 Solving Differential Equations in R The R Journal, 2010, 2, 5-15

Steady-state Solver overview: package rootSolve

Simple problems can be solved iteratively

Function	Description
stode	steady-state ODEs by Newton-Raphson method, full or banded Jacobian
stodes	steady-state ODEs by Newton-Raphson method, arbi- trary sparse Jacobian

Others are solved by dynamically running to steady-state

- steady (. . method = "runsteady") for 0-D models
- steady.1D (. .. method = "runsteady") for 1-D models
- no special solver for higher dimensions - but use ode.2D, ode.3D from deSolve for sufficiently long time

Options of solver functions

Top level function

```
> steady(y, time = NULL, func, parms, method = "stode", ...)
```

Workhorse function: the individual solver

```
> stode(y, time = 0, func, parms = NULL, rtol = 1e-06, atol = 1e-08,
+ ctol = 1e-08, jacfunc = NULL, jactype = "fullint", verbose = FALSE,
+ bandup = 1, banddown = 1, positive = FALSE, maxiter = 100,
+ ynames = TRUE, dllname = NULL, initfunc = dllname, initpar = parms,
+ rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
+ initforc = NULL, fcontrol = NULL, ...)
```


Notes

$>$ positive $=$ TRUE forces to find relevant solutions for quantitities that can not be negative.

- ynames can be used to label the output - useful for plotting

1-D problem: polluted estuary

Problem formulation

Ammonia and oxygen are described in an estuary. They react to form nitrate. The concentrations are at steady state.

$$
\begin{array}{lll}
0 & =\frac{\partial}{\partial x}\left(D \frac{\partial N H_{3}}{\partial x}\right) & -v \frac{\partial N H_{3}}{\partial x_{x}}-r_{n i t} \\
0 & =\frac{\partial}{\partial x}\left(D \frac{\partial O_{2}}{\partial x}\right) & -v \frac{\partial O_{2}}{\partial x}
\end{array}-2 r_{n i t}+p \cdot\left(O_{2} s-O_{2}\right),
$$

- parameters: $k=1, r=0.1, p=0.1, O_{2} s=300, v=1000, D=1 e^{7}$
- The estuary is 100 km long.
- The boundary conditions are:

$$
\mathrm{NH}_{3}(0)=500, \mathrm{O}_{2}(0)=50, N H_{3}\left(1 e^{5}\right)=10, \mathrm{O}_{2}\left(1 e^{5}\right)=30
$$

Polluted estuary in R

define grid:

```
> require(ReacTran)
> N <- 1000
> Grid <- setup.grid.1D(N = N, L = 100000)
```

derivative function:

```
> Estuary <- function(t, y, parms) {
+ NH3 <- y[1:N]
+ 02 <- y[(N+1):(2*N)]
+ tranNH3<- tran.1D (C = NH3, D = 1e7, v = 1000,
+ C.up = 500, C.down = 10, dx = Grid)$dC
+ tranO2 <- tran.1D (C = 02 , D = 1e7, v = 1000,
+ C.up = 100, C.down = 250, dx = Grid)$dC
+
+ r_nit <- 0.1 * O2 / (O2 + 1) * NH3
+ dNH3 <- tranNH3 - r_nit
+ dO2 <- tranO2 - 2 * r_nit + 0.1 * (300 - 02)
+ list(c( dNH3, dO2 ), r_nit = r_nit)
+ }
```


numerical solution:

```
> print(system.time(
+ std <- steady.1D(y = runif(2 * N), parms = NULL, names=c("NH3", "O2"),
+ func = Estuary, dimens = N, positive = TRUE) ))
```

 user system elapsed
 \(\begin{array}{lll}0.10 & 0.00 & 0.09\end{array}\)

Plotting

> plot(std, which = c("NH3", "O2", "r_nit"), lwd = 2,
$+\quad$ mfrow $=c(1,3)$, grid $=$ Grid\$x.mid, xlab = "distance, m",
$+\quad y l a b=c(" m m o l m-3 ", ~ " m m o l m-3 ", ~ " m m o l m-3 d-1 "))$

NH3

02

distance, m
r_nit

distance, m

Plotting with Observations

```
> obs <- data.frame(x = seq(0, 9e4, by = 1e4),
+ O2 = c(100, 0, 0, 100, 150, 200, 250, 300, 300, 300))
> plot(std, which = c("NH3", "O2", "r_nit"), lwd = 2,
+ obs = obs, obspar = list(pch = 18, col = "red", cex = 2),
+ grid = Grid$x.mid, xlab = "distance, m",
+ ylab = c("mmol m-3", "mmol m-3", "mmol m-3 d-1"), mfrow=c(1,3))
```


Steady-state of a 2-D PDE

Problem formulation

A relatively stiff PDE is the combustion problem, describing diffusion and reaction in a 2-dimensional domain (from [6]). The steady-state problem is:

$$
0=-\nabla \cdot(-K \nabla U)+\frac{R}{\alpha \delta}(1+\alpha-U) \exp (\delta(1-1 / U))
$$

- The domain is rectangular $([0,1] *[0,1])$
- $K=1, \alpha=1, \delta=20, R=5$,
- Downstream boundary is prescribed as a known value (1)
- Upstream boundary: zero-flux

2-D combustion problem in R

```
grid and parameters:
> library(ReacTran)
> N <- 100
> Grid <- setup.grid.1D(0, 1, N = N)
> alfa <- 1; delta <- 20; R <- 5
```

derivative function:

```
> Combustion <- function(t, y, p) {
+ U <- matrix(nrow = N, ncol = N, data = y)
+
+ reac <- R /alfa/delta * (1+alfa-U) * exp(delta*(1-1/U))
+ tran <- tran.2D(C = U, D.x = 1, flux.x.up = 0, flux.y.up = 0, C.x.down = 1,
+ C.y.down = 1, dx = Grid, dy = Grid)
+ list (tran$dC+ reac)
+ }
```

solution (10000 equations):

```
> print(system.time(
+ std <- steady. 2D (y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
+ dimens =c(N,N), lrw = 1e6, positive = TRUE)
+ ))
\begin{tabular}{lrr} 
user & system & elapsed \\
1.52 & 0.00 & 1.52
\end{tabular}
```

Examples

Plotting

> image(std, main = "Combustion", legend $=$ TRUE)

Steady-state of a 3-D PDE

Problem formulation

3-D problems are computationally heavy - only smaller problems can be solved in R
Model of diffusion and simple reaction in a 3-dimensional domain.

$$
0=-\nabla \cdot(-D \nabla Y)-r * Y
$$

- The domain is rectangular $([0,1] *[0,1] *[0,1])$
- $D=1, r=0.025$,
- Initial condition: constant: $U(x, y, 0)=1$.
- Upstream and Downstream boundaries: $=1$

3-D problem in R

grid and parameters:

> library (ReacTran)
> n <- 20
> Grid <- setup.grid.1D(0, 1, $N=n$)
derivative function:

```
> diffusion3D <- function(t, Y, par) {
+
+ yy <- array(dim = c(n, n, n), data = Y) # vector to 3-D array
+ <- -0.025 * yy # consumption
+ BND <- matrix(nrow = n, ncol = n, 1) # boundary concentration
+
+ dY <- dY + tran.3D(C = yy,
+ C.x.up = BND, C.y.up = BND, C.z.up = BND,
+ C.x.down = BND, C.y.down = BND, C.z.down = BND,
+ D.x = 1, D.y = 1, D.z = 1,
+ dx = Grid, dy = Grid, dz = Grid)$dC
+ return(list(dY))
+ }
```


solution (10000 equations):

```
> print(system.time(
+ ST3 <- steady.3D(y = rep(1, n*n*n), func = diffusion3D, parms = NULL,
+ pos = TRUE, dimens = c(n, n, n), lrw = 2000000) ))
    user system elapsed
    2.01 0.01 2.03
```


Plotting

a selection of 2-D projections, in the x-direction

```
> image(ST3, mfrow = c(2, 2), add.contour = TRUE, legend = TRUE,
+ dimselect = list (x = c(4, 8, 12, 16)))
```


Under control: Forcing functions and events

Discontinuities in dynamic models

Most solvers assume that dynamics is smooth
However, there can be several types of discontinuities:

- Non-smooth external variables
- Discontinuities in the derivatives
- Discontinuites in the values of the state variables

A solver does not have large problems with first two types of discontinuities, but changing the values of state variables is much more difficult.

External variables in dynamic models

... also called forcing functions

Why external variables?

- Some important phenomena are not explicitly included in a differential equation model, but imposed as a time series. (e.g. sunlight, important for plant growth is never "modeled").
- Somehow, during the integration, the model needs to know the value of the external variable at each time step!

External variables in dynamic models

Implementation in R

- R has an ingenious function that is especially suited for this task: function approxfun
- It is used in two steps:
- First an interpolating function is constructed, that contains the data. This is done before solving the differential equation.

```
afun <- approxfun(data)
```

- Within the derivative function, this interpolating function is called to provide the interpolated value at the requested time point (t):

```
tvalue <- afun(t)
```

?forcings will open a help file

Example: Predator-Prey model with time-varying input

This example is from [16]
Create an artificial time-series

```
> times <- seq(0, 100, by = 0.1)
> signal <- as.data.frame(list(times = times, import = rep(0, length(times))))
> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)
> signal[8:12,]
    times import
8 0.7 0
9 0.8 0
10}0.9
11 1.0 1
12 1.1 1
```

Create the interpolating function, using approxfun

```
> input <- approxfun(signal, rule = 2)
```

$>\operatorname{input}(\operatorname{seq}(f r o m=0.98$, to $=1.01$, by $=0.005)$)
[1] $0.800 .850 .90 \quad 0.951 .001 .001 .00$

A Predator-Prey model with time-varying input

```
Use interpolation function in ODE function
> SPCmod <- function(t, x, parms) {
+ with(as.list(c(parms, x)), {
+
+ import <- input(t)
+
+ dS <- import - b *S*P + g*C
+ dP<-c*S*P - d*C*P
+ dC<-e *P*C-f*C
+ res <- c(dS, dP, dC)
+ list(res, signal = import)
+ })
+ }
> parms <- c(b=0.1,c=0.1,d=0.1,e = 0.1, f=0.1, g=0)
> xstart <- c(S = 1, P = 1, C = 1)
> out <- ode(y = xstart, times = times, func = SPCmod, parms)
```


Plotting model output

> plot(out)

Discontinuities in dynamic models: Events

What?

- An event is when the values of state variables change abruptly.

Events in Most Programming Environments

- When an event occurs, the simulation needs to be restarted.
- Use of loops etc. ...
- Cumbersome, messy code

Events in R

- Events are part of a model; no restart necessary
- Separate dynamics inbetween events from events themselves
- Very neat and efficient!

Discontinuities in dynamic models, Events

Two different types of events in R

- Events occur at known times
- Simple changes can be specified in a data.frame with:
- name of state variable that is affected
- the time of the event
- the magnitude of the event
- event method ("replace", "add", "multiply")
- More complex events can be specified in an event function that returns the changed values of the state variables function(t, y, parms, ...).
- Events occur when certain conditions are met
- Event is triggered by a root function
- Event is specified in an event function
?events will open a help file

A patient injects drugs in the blood

Problem Formulation

- Describe the concentration of the drug in the blood
- Drug injection occurs at known times \rightarrow data.frame

Dynamics inbetween events

- The drug decays with rate b
- Initially the drug concentration $=0$
> pharmaco <- function(t, blood, p) \{
$+\quad$ dblood <- - b * blood
$+\quad$ list(dblood)
$+\}$
$>b<-0.6$
> yini <-c $($ blood $=0)$

A patient injects drugs in the blood

Specifying the event

- Daily doses, at same time of day
- Injection makes the concentration in the blood increase by 40 units.
- The drug injections are specified in a special event data.frame

```
> injectevents <- data.frame(var = "blood",
+ time = 0:20,
+ value = 40,
+ method = "add")
```

> head(injectevents)

var time					value	method
1	blood	0	40			

A patient injects drugs in the blood

Solve model

- Pass events to the solver in a list
- All solvers in deSolve can handle events
- Here we use the "implicit Adams" method

```
> times <- seq(from = 0, to = 10, by = 1/24)
> outDrug <- ode(func = pharmaco, times = times, y = yini,
+ parms = NULL, method = "impAdams",
+ events = list(data = injectevents))
```


plotting model output

> plot(outDrug)
blood

An event triggered by a root: A Bouncing Ball

Problem formulation

- A ball is thrown vertically from the ground $(y(0)=0)$
- Initial velocity $\left(y^{\prime}\right)=10 \mathrm{~m} \mathrm{~s}^{-1}$; acceleration $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
- When ball hits the ground, it bounces.

ODEs describe height of the ball above the ground (y)

Specified as $2^{\text {nd }}$ order ODE

$$
\begin{array}{ll}
y^{\prime \prime} & =-g \\
y(0) & =0 \\
y^{\prime}(0) & =10
\end{array}
$$

Specified as $1^{\text {st }}$ order ODE

$$
\begin{array}{ll}
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =-g \\
y_{1}(0) & =0 \\
y_{2}(0) & =10
\end{array}
$$

A Bouncing Ball

Dynamics inbetween events

```
> library(deSolve)
```

> ball <- function(t, y, parms) \{
$+\quad d y 1<-y[2]$
$+\quad$ dy2 <- -9.8
$+$
$+\quad$ list(c(dy1, dy2))
$+3$
> yini <- c(height = 0 , velocity $=10$)

The Ball Hits the Ground and Bounces

Root: the Ball hits the ground

- The ground is where height $=0$
- Root function is 0 when $y_{1}=0$

```
> rootfunc <- function(t, y, parms) return (y[1])
```


Event: the Ball bounces

- The velocity changes sign (-) and is reduced by 10%
- Event function returns changed values of both state variables

```
> eventfunc <- function(t, y, parms) {
+ y[1] <- 0
+ y[2] <- -0.9*y[2]
+ return(y)
+ }
```


An event triggered by a root: the bouncing ball

Solve model

- Inform solver that event is triggered by root (root = TRUE)
- Pass event function to solver
- Pass root function to solver

```
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- ode(times = times, y = yini, func = ball,
+ parms = NULL, rootfun = rootfunc,
+ events = list(func = eventfunc, root = TRUE))
```


Get information about the root

> attributes(out)\$troot

[1]	2.040816	3.877551	5.530612	7.018367	8.357347	9.562428	10.647001	11.623117
[9]	12.501621	13.292274	14.003862	14.644290	15.220675	15.739420	16.206290	16.626472
[17]	17.004635	17.344981	17.651291	17.926970	18.175080	18.398378	18.599345	18.780215
$[25]$	18.942998	19.089501	19.221353	19.340019	19.446818	19.542936	19.629441	19.707294
$[33]$	19.777362	19.840421	19.897174	19.948250	19.994217			

An event triggered by a root: the bouncing ball

> plot(out, select = "height")
height

An event triggered by a root: the bouncing ball

Create Movie-like output

```
for (i in seq(1, 2001, 10)) {
    plot(out, which = "height", type = "l", lwd = 1,
        main = "", xlab = "Time", ylab = "Height"
    )
    points(t(out[i,1:2]), pch = 21, lwd = 1, col = 1, cex = 2,
        bg = rainbow(30, v = 0.6)[20-abs(out[i,3])+1])
    Sys.sleep(0.01)
}
```


Exercise: Add events to a logistic equation

ODE: Logistic growth of a population

$$
\begin{aligned}
& y^{\prime}=r \cdot y \cdot\left(1-\frac{y}{K}\right) \\
& r=1, K=10, y_{0}=2
\end{aligned}
$$

Events: Population harvested according to several strategies

1. No harvesting
2. Every 2 days the population's density is reduced to 50%
3. When the population approaches 80% of its carrying capacity, its density is halved.

Exercise: Add events to a logistic equation - ctd

Tasks:

- Run the model for 20 days
- Implement first strategy in a data.frame
- Second strategy requires root and event function
- Use file examples/logisticEvent.R.txt as a template

Delay Differential Equations

What?
Delay Differential Equations are similar to ODEs except that they involve past values of variables and/or derivatives.

DDEs in R: R-package deSolve

- dede solves DDEs
- lagvalue provides lagged values of the state variables
- lagderiv provides lagged values of the derivatives

Example: Chaotic Production of White Blood Cells

Mackey-Glass Equation:

- y: current density of white blood cells,
$\Rightarrow y_{\tau}$ is the density τ time-units in the past,
- first term equation is production rate
- b is destruction rate

$$
\begin{align*}
& y^{\prime}=a y_{\tau} \frac{1}{1+y_{\tau}^{c}}-b y \\
& y_{\tau}=y(t-\tau) \tag{1}\\
& y_{t}=0.5 \quad \text { for } t \leq 0
\end{align*}
$$

- For $\tau=10$ the output is periodic,
- For $\tau=20$ cell densities display a chaotic pattern

Solution in R

```
> library(deSolve)
> retarded <- function(t, y, parms, tau) {
+ tlag <- t - tau
+ if (tlag <= 0)
+ ylag <- 0.5
+ else
+ ylag <- lagvalue(tlag)
+
+ dy <- 0.2 * ylag * 1/(1+ylag^10) - 0.1 * y
+ list(dy = dy, ylag = ylag)
+ }
> yinit <- 0.5
> times <- seq(from = 0, to = 300, by = 0.1)
> yout1 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 10)
> yout2 <- dede(y = yinit, times = times, func = retarded, parms = NULL, tau = 20)
```


Solution in R

> plot(yout1, lwd = 2, main = "tau=10", ylab = "y", mfrow = c(2, 2), which = 1)
> plot (yout1[,-1], type = "l", lwd = 2, xlab = "y")
> plot(yout2, lwd = 2, main = "tau=20", ylab = "y", mfrow = NULL, which = 1)
> plot(yout2[,-1], type = "l", lwd = 2, xlab = "y")

Exercise: the Lemming model

A nice variant of the logistic model is the DDE lemming model:

$$
\begin{equation*}
y^{\prime}=r \cdot y\left(1-\frac{y(t-\tau)}{K}\right) \tag{2}
\end{equation*}
$$

Use file examples/ddelemming.R.txt as a template to implement this model

- initial condition $y(t=0)=19.001$
- parameter values $r=3.5, \tau=0.74, K=19$
- history $y(t)=19$ for $t<0$
- Generate output for t in $[0,40]$.

Diffusion, advection and reaction:
Partial differential equations (PDE) with ReacTran

Partial Differential Equations

Many second-order PDEs can be written as advection-diffusion problems:

$$
\frac{\partial C}{\partial t}=-v \frac{\partial C}{\partial x}+D \frac{\partial^{2} C}{\partial x^{2}}+f(t, x, C)
$$

... same for 2-D and 3-D
Example: wave equation in 1-D

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

can be written as:

$$
\begin{align*}
& \frac{d u}{d t}=v \tag{4}\\
& \frac{\partial v}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
\end{align*}
$$

Three packages for solving PDEs in R

ReacTran: methods for numerical approximation of PDEs

- tran.1D(C, C.up, C.down, D, v, ...)
- tran.2D, tran.3D
deSolve: general-purpose solvers for time-varying cases
- ode.1D(y, times, func, parms, nspec, dimens, method, names, ...)
- ode.2D, ode.3D
rootSolve: special solvers for time-invariant cases
- steady.1D(y, time, func, parms, nspec, dimens, method, names, ...)
- steady.2D, steady.3D

Numerical solution of the wave equation

```
library(ReacTran) « http://desolve.r-forge.r-project.org
wave <- function (t, y, parms) {
    u <- y[1:N]
    v <- y[(N+1):(2*N)]
    du <- v
    dv <- tran.1D(C = u, C.up = 0, C.down = 0, D = 1,
        dx = xgrid)$dc
list(c(du, dv))
}
xgrid <- setup.grid.1D(-100, 100, dx.1 = 0.2)
x <- xgrid$x.mid
N <- xgrid$N
uini <- exp(-0.2*x^2)
vini <- rep(0, N)
yini <- c(uini, vini) Numerical method provided by the
times <- seq (from = 0, to = 50, by = 1) deSolve package
out <- ode.1D(yini, times, wave, parms, method = "adams",
    names = c("u", "v"), dimens = N)
image(out, grid = x)
```


Plotting 1-D PDEs: matplot.1D

> outtime <- seq(from $=0$, to $=50$, by $=10$)
> matplot. $1 D$ (out, which = "u", subset = time \%in\% outtime, grid = x,
$+\quad x l a b=" x ", y l a b=" u ", ~ t y p e=" l ", ~ l w d=2$, xlim $=c(-50,50), c o l=" b l a c k ")$

Plotting 1-D PDEs: image

> image(out, which $=" u "$, grid $=x$)

Plotting 1-D PDEs: persp plots

> image(out, which = "u", grid = x, method = "persp", border = NA,
$+\operatorname{col}=$ "lightblue", box $=$ FALSE, shade $=0.5$, theta $=0$, phi $=60$)

Exercise: the Brusselator

Problem formulation

The Brusselator is a model for an auto-catalytic chemical reaction between two products, A and B, and producing also C and D in a number of intermediary steps.

$$
\begin{array}{lll}
A & \xrightarrow{k_{1}} & X_{1} \\
B+X_{1} & \xrightarrow{k_{2}} & X_{2}+C \\
2 X_{1}+X_{2} & \xrightarrow{k_{3}} & 3 X_{1} \\
X_{1} & \xrightarrow{k_{4}} & D
\end{array}
$$

where the k_{i} are the reaction rates.
[7] Lefever, R., Nicolis, G. and Prigogine, I. (1967) On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium Journal of Chemical Physics 47, 1045-1047

Exercise: Implement the Brusselator in 1-D

$$
\begin{aligned}
\frac{\partial X_{1}}{\partial t} & =D_{X_{1}} \frac{\partial^{2} X_{1}}{\partial x^{2}}+1+X_{1}^{2} X_{2}-4 X_{1} \\
\frac{\partial X_{2}}{\partial t} & =D_{X_{2}} \frac{\partial^{2} X_{2}}{\partial x^{2}}+3 X_{1}-X_{1}^{2} X_{2}
\end{aligned}
$$

Tasks

- The grid x extends from 0 to 1 , and consists of 50 cells.
- Initial conditions:

$$
X_{1}(0)=1+\sin (2 * \pi * x), X_{2}(0)=3
$$

- Generate output for $t=0,1, \ldots 10$.
- Use file implementing the wave equation as a template: examples/wave.R.txt

2-D wave equation: Sine-Gordon

Problem formulation

The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial differential equation involving the sine of the dependent variable.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=D \frac{\partial^{2} u}{\partial x^{2}}+D \frac{\partial^{2} u}{\partial y^{2}}-\sin u \tag{5}
\end{equation*}
$$

Rewritten as two first order differential equations:

$$
\begin{align*}
& \frac{d u}{d t}=v \\
& \frac{\partial v}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+D \frac{\partial^{2} u}{\partial y^{2}}-\sin u \tag{6}
\end{align*}
$$

2-D Sine-Gordon in R

grid:

```
> Nx <- Ny <- }10
> xgrid <- setup.grid.1D(-7, 7, N = Nx); x <- xgrid$x.mid
> ygrid <- setup.grid.1D(-7, 7, N = Ny); y <- ygrid$x.mid
```


derivative function:

```
> sinegordon2D <- function(t, C, parms) {
+ u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
+ v <- matrix(nrow = Nx, ncol = Ny, data =C[(Nx*Ny+1):(2*Nx*Ny)])
+ dv<- tran.2D (C = u, C.x.up = O, C.x.down = 0, C.y.up = 0, C.y.down = 0,
+ D.x = 1, D.y = 1, dx = xgrid, dy = ygrid)$dC - sin(u)
+ list(c(v, dv))
+ }
```


initial conditions:

```
> peak <- function (x, y, x0, y0) return(exp(-( (x-x0)^2 + (y-y0)^2)))
> uini <- outer(x, y, FUN = function(x, y) peak(x, y, 2,2) + peak(x, y, -2,-2)
+ +peak(x, y,-2,2) + peak(x, y, 2,-2))
> vini <- rep(0, Nx*Ny)
```


solution:

```
> out <- ode.2D (y = c(uini,vini), times = 0:3, parms = 0, func = sinegordon2D,
+ names = c("u", "v"), dimens = c(Nx, Ny), method = "ode45")
```


Plotting 2-D PDEs: image plots

> image(out, which = "u", grid = list(x, y), mfrow = c(2,2), ask = FALSE)

Plotting 2-D PDEs: persp plots

> image (out, which = "u", grid = list (x, y), method = "persp", border = NA,
$+\quad$ col $=$ "lightblue", box $=$ FALSE, shade $=0.5$, theta $=0$, phi $=60$,
$+\quad$ mfrow $=c(2,2)$, ask $=$ FALSE $)$

Movie-like output of 2-D PDEs

```
out <- ode.2D (y = c(uini, vini), times \(=\operatorname{seq}(0,3\), by \(=0.1)\),
    parms \(=\) NULL, func \(=\) sinegordon2D,
    names=c("u", "v"), dimens = c(Nx, Ny),
    method = "ode45")
image(out, which = "u", grid = list( \(\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y}\) ),
    method = "persp", border = NA,
    theta \(=30\), phi \(=60\), box \(=\) FALSE, ask \(=\) FALSE)
```


Exercise: Implement the Brusselator in 2-D

$$
\begin{aligned}
& \frac{\partial X_{1}}{\partial t}=D_{X_{1}} \frac{\partial^{2} X_{1}}{\partial x^{2}}+D_{X_{1}} \frac{\partial^{2} X_{1}}{\partial y^{2}}+1+X_{1}^{2} X_{2}-4 X_{1} \\
& \frac{\partial X_{2}}{\partial t}=D_{X_{2}} \frac{\partial^{2} X_{1}}{\partial x^{2}}+D_{X_{2}} \frac{\partial^{2} X_{1}}{\partial y^{2}}+3 X_{1}-X_{1}^{2} X_{2}
\end{aligned}
$$

Tasks

- The grids x and y extend from 0 to 1 , and consist of 50 cells.
- Parameter settings: diffusion coefficient:

$$
D_{X_{1}}=2 ; D_{X_{2}}=8 * D_{X_{1}}
$$

- Initial condition for X_{1}, X_{2} : random numbers inbetween 0 and 1 .
- Generate output for $\mathrm{t}=0,1, \ldots 8$
- Use the file implementing the Sine-Gordon equation as a template: examples/sinegordon.R.txt

Differential-Algebraic Equations

Solver overview, examples

Two solvers for DAEs in R-package deSolve:

daspk

- a backward differentiation formula (BDF)
- DAEs of index 1 only
- Can solve DAEs in form $M y^{\prime}=f(x, y)$ and $F\left(x, y, y^{\prime}\right)=0$

radau

- an implicit Runge-Kutta formula (BDF)
- DAEs of index ≤ 3
- Can solve DAEs in form $M y^{\prime}=f(x, y)$ only
... more in package deTestSet
[1] Brenan, K. E., Campbell, S. L. and Petzold, L. R. (1996) Numerical Solution of Initial-Value Problems in Differential-Algebraic
Equations. SIAM Classics in Applied Mathematics.
[4] Hairer, E. and Wanner, G. (2010) Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition, Springer-Verlag.

Options of solver functions

daspk (y, times, func = NULL, parms, dy, res, mass, ...) radau (y, times, func, parms, nind, mass, ...)

- func and mass: for $M y^{\prime}=f(x, y)$
- res: for $F\left(x, y, y^{\prime}\right)=0$
- nind: number of variables of index 1,2 , and $3 \Rightarrow$ equations should be sorted accordingly
- radau does not require specification of (consistent) initial derivatives (dy)

Implicit DAE: Robertson problem

Problem formulation

A classic problem to test stiff ODE/DAE solvers, given by Robertson (1966), written as a DAE (of index 1):

$$
\begin{aligned}
y_{1}^{\prime} & =-0.04 y_{1}+10^{4} y_{2} y_{3} \\
y_{2}^{\prime} & =0.04 y_{1}-10^{4} y_{2} y_{3}-3 e^{7} y_{2}^{2} \\
1 & =y_{1}+y_{2}+y_{3}
\end{aligned} \Rightarrow \begin{aligned}
& 0=-y_{1}^{\prime}-0.04 y_{1}+10^{4} y_{2} y_{3} \\
& 0=-y_{2}^{\prime}+0.04 y_{1}-10^{4} y_{2} y_{3}-3 e^{7} y_{2}^{2} \\
& 0
\end{aligned}
$$

The third equation is to conserve the total concentration of y_{1}, y_{2}, y_{3}

- initial conditions: $y_{1}=1, y_{2}=0, y_{3}=0$.
- output for $\left.t=10^{[0,0.1}, 0.2, \ldots 10\right]$
- solve with daspk

Robertson DAE in R

```
residual function (4 mandatory arguments):
> RobertsonDAE <- function(t, y, dy, parms) {
+
+ res1 <- -dy[1] - 0.04*y[1] + 1e4*y[2]*y[3]
+ res2 <- -dy[2] + 0.04*y[1] - 1e4*y[2]*y[3] - 3e7* y[2]^2
+ res3<- - 1 + y[1] + y[2] + y[3]
+
+ list(c(res1, res2, res3))
+ }
```

initial conditions (values, derivatives):
> yini <- c $(\mathrm{y} 1=1.0, \mathrm{y} 2=0, \mathrm{y} 3=0)$
> dyini <- rep $(0,3)$ \# rough guess often good enough

solution:

```
> times <- 10^ (seq(from = 0, to = 10, by = 0.1))
> out <- daspk(y = yini, dy = dyini, res = RobertsonDAE, parms = NULL,
+ times = times)
```


Plotting

> plot(out, log = "x", col = "darkblue", lwd = 2, mfrow=c(1,3))

time

time

time

The pendulum

Problem formulation, an index 3 DAE

Original equations:

$$
\text { M. } y^{\prime}=f(x, y)
$$

$$
\begin{aligned}
x^{\prime} & =u \\
y^{\prime} & =v \\
u^{\prime} & =-\lambda x \\
v^{\prime} & =-\lambda y-g \\
0 & =x^{2}+y^{2}-L^{2}
\end{aligned}
$$

$$
\Rightarrow\left|\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right| \cdot\left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
u^{\prime} \\
v^{\prime} \\
\lambda
\end{array}\right|=\left\lvert\, \begin{gathered}
u \\
v \\
-\lambda x \\
-\lambda y-g \\
x^{2}+y^{2}-L^{2}
\end{gathered}\right.
$$

- initial conditions: $x=1, y=0, u=0, v=1, \lambda=1$
- x and y variables of index $1, u, v$ of index $2, \lambda$ of index 3
- solve in $[0,10]$

Pendulum problem in R

derivative function:

```
> pendulum <- function (t, Y, parms) {
+ with (as.list(Y),
+ list(c(u,
+ v,
+ -lam * x,
+ -lam * y - 9.8,
    x^2 + y^2 -1
+ ))
+ )
+ }
```

mass matrix and index vector:

```
> M <- diag(nrow = 5)
> M[5, 5] <- 0
> index <- c(2, 2, 1)
```

initial conditions:
> yini <- c $(x=1, y=0, u=0, v=1, l a m=1)$

solution:

```
> times <- seq(from = 0, to = 10, by = 0.01)
> out <- radau (y = yini, func = pendulum, parms = NULL,
+ times = times, mass = M, nind = index)
```


Plotting

> plot(out, type = "l", lwd = 2)
> plot(out[, c("x", "y")], type = "l", lwd = 2)

Speeding up: Matrices and compiled code

Methods for speeding up

1. Use matrices,
2. Implement essential parts in compiled code (Fortran, C),
3. Implement the full method in compiled code.

Formulating a model with matrices and vectors can lead to a considerable speed gain - and compact code - while retaining the full flexibility of R. The use of compiled code saves even more CPU time at the cost of a higher development effort.

Use of matrices

A Lotka-Volterra model with 4 species

```
> model <- function(t, n, parms) {
+ with(as.list(c(n, parms)), {
+ dn1 <- r1 * n1 - a13 * n1 * n3
+ dn2 <- r2 * n2 - a24 * n2 * n4
+ dn3 <- a13 * n1 * n3 - r3 * n3
+ dn4 <- a24 * n2 * n4 - r4 * n4
+ return(list(c(dn1, dn2, dn3, dn4)))
+ })
+ }
> parms <-c(r1 = 0.1, r2 = 0.1, r3 = 0.1, r4 = 0.1, a13 = 0.2, a24 = 0.1)
> times = seq(from = 0, to = 500, by = 0.1)
>n0=c(n1 = 1, n2 = 1, n3 = 2, n4 = 2)
> system.time(out <- ode(n0, times, model, parms))
    user system elapsed
```

Source: examples/lv-plain-or-matrix.R.txt

Use of matrices

A Lotka-Volterra model with 4 species

```
> model <- function(t, n, parms) {
+ with(parms, {
+ dn <- r*n + n* (A %*% n)
+ return(list(c(dn)))
+ })
+ }
> parms <- list(
+ r=c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1),
+ A = matrix(c(0.0, 0.0, -0.2, 0.0, # prey 1
+ 0.0, 0.0, 0.0, -0.1, # prey 2
+ 0.2, 0.0, 0.0, 0.0, # predator 1; eats prey 1
+ 0.0, 0.1, 0.0, 0.0), # predator 2; eats prey 2
+ nrow = 4, ncol = 4, byrow = TRUE)
+ )
> system.time(out <- ode(n0, times, model, parms))
```

 user system elapsed
 \(0.25 \quad 0.00 \quad 0.25\)
 Source: examples/lv-plain-or-matrix.R.txt

Results

- plot (out) will show the results.
- Note that the "plain" version has only 1 to 1 connections, but the matrix model is already full connected (with most connections are zero). The comparison is insofar unfair that the matrix version (despite faster execution) is more powerful.
- Exercise: Create a fully connected model in the plain version for a fair comparison.
- A parameter example (e.g. for weak coupling) can be found on: http:
//tolstoy.newcastle.edu.au/R/e7/help/09/06/1230.html

Using compiled code

All solvers of deSolve

- allow direct communication between solvers and a compiled model.

See vignette ("compiledCode")

Principle

- Implement core model (and only this) in C or Fortran,
- Use data handling, storage and plotting facilities of R.
examples/compiled_lorenz/compiledcode.svg
[16] Soetaert, K., Petzoldt, T. and Setzer, R. (2009) R-package deSolve, Writing Code in Compiled Languages.

Thank you!

More Info:
http://desolve.r-forge.r-project.org

Citation

A lot of effort went in creating this software; please cite it when using it.

- deSolve: [22], rootSolve [21], ReacTran [18],
- Some complex examples can be found in [20],
- A framework to fit differential equation models to data is FME [19],
- ... and don't forget the authors of the original algorithms [5, 10, 2]!

Acknowledgments

- None of this would be possible without the splendid work of the R Core Team [11],
- This presentation was created with Sweave [8],
- Creation of the packages made use of R-Forge [23].

Bibliography I

[1] K E Brenan, S L Campbell, and L R Petzold.
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations.
SIAM Classics in Applied Mathematics, 1996.
[2] P N Brown, G D Byrne, and A C Hindmarsh.
Vode, a variable-coefficient ode solver.
SIAM Journal on Scientific and Statistical Computing, 10:1038-1051, 1989.
[3] E Hairer, S. P. Norsett, and G Wanner.
Solving Ordinary Differential Equations I: Nonstiff Problems. Second Revised Edition.
Springer-Verlag, Heidelberg, 2009.
[4] E Hairer and G Wanner.
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Second Revised Edition.
Springer-Verlag, Heidelberg, 2010.
[5] A. C. Hindmarsh.
ODEPACK, a systematized collection of ODE solvers.
In R. Stepleman, editor, Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation, pages 55-64. IMACS / North-Holland, Amsterdam, 1983.
[6] W. Hundsdorfer and J.G. Verwer.
Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2003.
[7] R. Lefever, G. Nicolis, and I. Prigogine.
On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium.
Journal of Chemical Physics, 47:1045-1047, 1967.
[8] Friedrich Leisch.
Dynamic generation of statistical reports using literate data analysis.
In W. Härdle and B. Rönz, editors, COMPSTAT 2002 - Proceedings in Computational Statistics, pages 575-580, Heidelberg, 2002.
Physica-Verlag.

[9] M. C. Mackey and L. Glass.
Oscillation and chaos in physiological control systems.
Science, 197:287-289, 1977.
[10] Linda R. Petzold.
Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations.
SIAM Journal on Scientific and Statistical Computing, 4:136-148, 1983.
[11] R Development Core Team.
R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.
[12] H. H. Robertson.
The solution of a set of reaction rate equations.
In J. Walsh, editor, Numerical Analysis: An Introduction, pages 178-182. Academic Press, London, 1966.
[13] O.E. Rossler.
An equation for continous chaos.
Physics Letters A, 57 (5):397-398, 1976.
[14] L. F. Shampine, I. Gladwell, and S. Thompson.
Solving ODEs with MATLAB.
Cambridge University Press, Cambridge, 2003.
[15] L.F Shampine and S. Thompson.
Solving ddes in matlab.
App. Numer. Math., 37:441-458, 2001.
[16] K Soetaert, T Petzoldt, and RW Setzer.
R-package deSolve, Writing Code in Compiled Languages, 2009.
package vignette.
[17] Karline Soetaert.
rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations, 2009.
R package version 1.6.

[18] Karline Soetaert and Filip Meysman.
Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software r.
Environmental Modelling \& Software, 32:49-60, 2012.
[19] Karline Soetaert and Thomas Petzoldt.
Inverse modelling, sensitivity and monte carlo analysis in R using package FME.
Journal of Statistical Software, 33(3):1-28, 2010.
[20] Karline Soetaert and Thomas Petzoldt.
Solving ODEs, DAEs, DDEs and PDEs in R.
Journal of Numerical Analysis, Industrial and Applied Mathematics, in press, 2011.
[21] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer.
Solving Differential Equations in R.
The R Journal, 2(2):5-15, December 2010.
[22] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer.
Solving differential equations in R: Package deSolve.
Journal of Statistical Software, 33(9):1-25, 2010.
[23] Stefan TheußI and Achim Zeileis.
Collaborative Software Development Using R-Forge.
The R Journal, 1(1):9-14, May 2009.
[24] B. van der Pol and J. van der Mark.
Frequency demultiplication.
Nature, 120:363-364, 1927.

